Skip to main content
Log in

Spectral methods of heart rate variability analysis during dynamic exercise

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Objectives

To apply both autoregressive (AR) and fast Fourier transform (FFT) spectral analysis at rest, during two different dynamic exercise intensities and in recovery from maximal exercise and to compare raw and normalized powers obtained with both methods.

Methods

Sixteen participants (age 22.3 ± 4.3 year) performed resting, submaximal and maximal protocols. The submaximal protocol consisted of two 5-min walks at 4 km h−1 at treadmill grades of 0 and 7.5%. Beat-to-beat R-R series were recorded. FFT and AR analyses were preformed on the same R-R series.

Results

Compared to AR, FFT provided higher total power (TP) and raw high-frequency (HF) power at rest and exercise. Furthermore, FFT LF/HF ratio was lower than with the AR, except under resting conditions. Both methods showed reductions in TP, raw HF and LF powers during exercise and recovery. Only the AR revealed a significant reduction for normalized HF power and increase for normalized LF power in transition from rest to exercise conditions.

Interpretation

AR and FFT methods are not interchangeable at rest or during dynamic exercise conditions. The AR method is more sensitive to the effects of exercise on the normalized power spectra of heart rate variability (HRV) than FFT. Finally, as both approaches are equally insensitive to the increase of exercise relative intensity, there is no practical advantage of performing HRV spectral analyses by the AR or FFT at higher workloads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arai Y, Saul J, Albrecht P, Hartley L, Lilly L, Cohen R (1989) Modulation of cardiac autonomic activity during and immediately after exercise. Am J Physiol Heart Circ O Physiol 256:H132–H141

    CAS  Google Scholar 

  2. Badilini F, Maison-Blanche P, Champomier P, Provost J, Coumel P, Milon H (2000) Frequency-domain heart rate variability in 24-hour holter recordings: role of spectral method to assess circadian patterns and pharmacological autonomic modulation. J Electrocardiol 33:147–157

    Article  PubMed  CAS  Google Scholar 

  3. Badilini F, Maison-Blanche P, Coumel P (1998) Heart rate variability in passive tilt test: comparative evaluation of autoregressive and FFT spectral analyses. Pacing Clin Electrophysiol 21:1122–1132

    Article  PubMed  CAS  Google Scholar 

  4. Bernardi L, Salvucci F, Suardi R, Solda P, Calciati A, Perlini S, Falcone C, Ricciardi L (1990) Evidence for an intrinsic mechanism regulating heart rate variability in the transplanted and the intact heart during submaximal exercise? Cardiovasc Res 24:969–981

    Article  PubMed  CAS  Google Scholar 

  5. Boardman A, Chlindwein F, Rocha A, Leite A (2002) A study on the optimum order of autoregressive models for heart rate variability. Physiol Meas 23:325–336

    Article  PubMed  Google Scholar 

  6. Breuer H, Skyschally A, Schulz R, Martin C, Wehr M, Heusch G (1993) Heart rate variability and circulating catecholamine concentrations in healthy volunteers. Br Heart J 70:144–149

    Article  PubMed  CAS  Google Scholar 

  7. Camm A, Malik M, Bigger J, Günter B, Cerutti S, Choen R, Coumel P, Fallen E, Kennedy H, Kleiger R, Lombardi F, Malliani A, Moss A, Rotmann J, Schwartz P, Singer D (1996) Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065

    Google Scholar 

  8. Casadei B, Cochrane S, Johnston J, Conway J, Sleight P (1995) Pitfalls in the interpretation of spectral analysis of the heart rate variability during exercise in humans. Cardiovasc Res 24:969–981

    Google Scholar 

  9. Casadei B, Moon J, Johnston J, Caiazza A, Sleight P (1996) Is respiratory sinus arrhythmia a good index of cardiac vagal tone in exercise? J Appl Physiol 81:556–564

    PubMed  CAS  Google Scholar 

  10. Chemla D, Young J, Badilini F, Maison-Blanche P, Affres H, Lecarpentier Y, Chanson P (2005) Comparison of fast Fourier transform and autoregressive spectral analysis for the study of heart rate variability in diabetic patients. Int J Cardiol 104:307–313

    Article  PubMed  Google Scholar 

  11. Dixon E, Kamath M, McCartney N, Fallen E (1992) Neural regulation of heart rate variability in endurance athletes and sedentary controls. Cardiovasc Res 26:713–719

    Article  PubMed  CAS  Google Scholar 

  12. Ewing D, Campbell W, Murray A, Neilson J, Clarke B (1978) Immediate heart-rate response to standing: simple test for autonomic neuropathy in diabetes. BMJ 1:145–147

    Article  PubMed  CAS  Google Scholar 

  13. Fagard R, Pardaens K, Staessen J, Thijs L (1998) Power spectral analysis of heart rate variability by autoregressive modelling and fast Fourier transform: a comparative study. Acta Cardiol 53:211–218

    PubMed  CAS  Google Scholar 

  14. Furlan R, Guzzetti S, Crivellaro W, Dassi S, Tinelli M, Baselli G, Cerutti S, Lombardi F, Pagani M, Malliani A (1990) Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation 81:537–547

    PubMed  CAS  Google Scholar 

  15. Gregoire J, Tuck S, Yamamoto Y, Hughson RL (1996) Heart rate variability at rest and exercise: influence of age, gender, and physical training. Can J Appl Physiol 21:455–470

    PubMed  CAS  Google Scholar 

  16. Imai K, Sato H, Hori M, Kusuoka H, Ozaki H, Ykoyama H, Takeda H, Inoue M, Kamada T (1994) Vagally mediated heart rate recovery after exercise in accelerated athletes but blunted in patients with chronic heart failure. Am J Coll Cardiol 24:1529–1535

    Article  CAS  Google Scholar 

  17. Kaikkonen P, Nummela A, Rusko H (2007) Heart rate variability dynamics during early recovery after different endurance exercises. Eur J Appl Physiol 102:79–86

    Article  PubMed  Google Scholar 

  18. Kesselbrener L, Akselrod S (1996) Selective discrete Fourier transform algorithm for time-frequency analysis: method and application on simulated cardiovascular signals. IEEE Trans Biomed Eng 43:789

    Article  Google Scholar 

  19. Leicht A, Sinclair W, Spinks W (2008) Effect of exercise mode on heart rate variability during steady state exercise. Eur J Appl Physiol 102:195–204

    Article  PubMed  Google Scholar 

  20. Malliani A, Pagani M, Lombardi F, Cerutti S (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84:482–492

    PubMed  CAS  Google Scholar 

  21. Malik M (1998) Heart rate variability. Curr Opin Cardiol 13:36–44

    Article  PubMed  CAS  Google Scholar 

  22. Martinmäki K, Rusko H (2008) Time-frequency analysis of heart rate variability during immediate recovery from low and high intensity exercise. Eur J Appl Physiol 102:353–360

    Article  PubMed  Google Scholar 

  23. McArdle W, Katch F, Katch V (2001) Individual differences and measurement of energy capacities. In: Exercise physiology: energy, nutrition and human performance. Lippincott Williams and Wilkins, Philadelphia, pp 222–248

  24. Niskanen J, Tarvainen M, Ranta-aho P, Karjalainen P (2004) Software for advanced HRV analysis. Comput Methods Programs Biomed 76:73–81

    Article  PubMed  Google Scholar 

  25. Orizio C, Perini R, Comandè A, Castellano M, Beschi M, Veicsteinas A (1998) Plasma catecholamines and heart rate at the beginning of muscular exercise in man. Eur J Appl Physiol 57:644–651

    Article  Google Scholar 

  26. Perini R, Milesi S, Biancardi L, Pendergast D, Veicsteinas A (1998) Heart rate variability in exercising humans: effect of water immersion. Eur J Appl Physiol 77:326–332

    Article  CAS  Google Scholar 

  27. Perini R, Milesi S, Fisher N, Pendergast D, Veicsteinas A (2000) Heart rate variability during dynamic exercise in elderly males and females. Eur J Appl Physiol 82:8–15

    Article  PubMed  CAS  Google Scholar 

  28. Perini R, Orizio C, Comandè A, Castellano M, Beschi M, Veicsteinas A (1989) Plasma norepinephrine and heart rate dynamics during recovery from submaximal exercise in man. Eur J Appl Physiol 58:879–883

    Article  CAS  Google Scholar 

  29. Perini R, Orizio C, Baselli G, Gerutti S, Veicsteinas A (1990) The influence of exercise intensity on the power spectrum of heart rate variability. Eur J Appl Physiol 61:143–148

    Article  CAS  Google Scholar 

  30. Pichon A, de Bisschop C, Roulaud A, Papellier Y (2004) Spectral analysis of heart rate variability during exercise in trained subjects. Med Sci Sport Exerc 36:1702–1708

    Article  Google Scholar 

  31. Pichon A, Roulaud M, Antoine-Jonville S, Bisschop C, Denjean A (2006) Spectral analysis of heart rate variability: inter-changeability between autoregressive analysis and fast Fourier transform. J Electrocardiol 39:31–37

    Article  PubMed  Google Scholar 

  32. Rimoldi O, Furlan R, Pagani M, Piazza S, Guazzi M, Pagani M, Malliani A (1992) Analysis of neural mechanisms accompanying different intensities of dynamic exercise. Chest 101:226–230

    Google Scholar 

  33. Robinson B, Epstein S, Beise G, Braunwald E (1966) Control of heart rate by autonomic nervous system. Studies in man on the interrelation between baroreceptor mechanisms and exercise. Circ Res 19:400–411

    PubMed  CAS  Google Scholar 

  34. Sandercock R, Brodie D (2006) The use of heart rate variability measures to assess autonomic control during exercise. Scand J Med Sci Sports 16:302–313

    Article  PubMed  CAS  Google Scholar 

  35. Tarvainen M, Ranta-aho P, Karjalainen P (2001) An advanced detrending method with application to HRV analysis. IEEE Trans Biomed Eng 49:172–175

    Article  Google Scholar 

  36. Terziotti P, Schen F, Gulli G (2001) Post-exercise recovery of autonomic cardiovascular control: a study by spectrum and cross-spectrum analysis in humans. Eur J Appl Physiol 84:187–194

    Article  PubMed  CAS  Google Scholar 

  37. Tulppo M, Hughson R, Mäkikallio T, Juhani Airaksinen K, Seppänen T, Huikuri H (2001) Effects of exercise and passive head-up tilt on fractal and complexity properties of heart rate dynamics. Am J Physiol Heart Circ O Physiol 280:H1081–H1087

    CAS  Google Scholar 

  38. Tulppo M, Mäkikallio T, Seppänen T, Laukkanen R, Huikuri H (1998) Vagal modulation of heart rate during exercise: effects of age and physical fitness. Am J Physiol 274:H424–H429

    PubMed  CAS  Google Scholar 

  39. Vilhena de Mendonça G, Pereira F (2008) Between-day variability of net and gross oxygen uptake during grade treadmill walking: effects of different walking intensities on the reliability of walking economy. Appl Physiol Nutr Metab 33:1199–1206

    Article  PubMed  Google Scholar 

  40. Warren J, Jaffe R, Wraa C, Stebbins C (1997) Effect of autonomic blockade on power spectrum of heart rate variability during exercise. Am J Physiol 273:R495–R502

    PubMed  CAS  Google Scholar 

  41. Whipp B (1971) Rate constant for the kinetics of oxygen uptake during light exercise. J Appl Physiol 30(2):261–263

    PubMed  CAS  Google Scholar 

  42. Winsley R, Armstrong N, Bywater K, Fawkner S (2003) Reliability of heart rate variability measures at rest and during light exercise in children. Br J Sports Med 37:550–552

    Article  PubMed  CAS  Google Scholar 

  43. Yamamoto Y, Hughson R, Peterson J (1991) Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. J Appl Physiol 71:1136–1142

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Center of Human Performance (CIPER), Faculty of Human Kinetics, Lisbon, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goncalo Vilhena Mendonca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendonca, G.V., Fernhall, B., Heffernan, K.S. et al. Spectral methods of heart rate variability analysis during dynamic exercise. Clin Auton Res 19, 237–245 (2009). https://doi.org/10.1007/s10286-009-0018-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-009-0018-1

Keywords

Navigation