Skip to main content

Neural Modeling Adsorption of Copper, Chromium, Nickel, and Lead from Aqueous Solution by Natural Wastes

  • Chapter
Progress in Clean Energy, Volume 1

Abstract

An artificial neural network (ANN) is used to model the static adsorption of copper, chromium, lead, and nickel by natural wastes, which are respectively charred cereal waste, Mediterranean biomass (Posidonia oceanica (L) DELILE), activated carbon as well as olive kernel and pulp. This intelligent model is used to predict and estimate the amount of adsorbed metal per mass unit of adsorbent or the yield percentage of the adsorption. The results obtained using multilayer neural network shows its effectiveness in predicting the experimental results. The relative error is 0.2 mg/g for charred cereal waste/Copper, Biomass/Chromium, and 1.9 % for the combinations activated carbon/Lead, olive kernel/Nickel, and olive pulp/Nickel, respectively. Furthermore, the same artificial neural network is exploited to predict the effect of some operating parameters (pH, temperature, initial metal concentration, contact time, agitation speed, ionic strength, and adsorbent weight) that affect the static adsorption of these metals by several types of adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC:

Activated carbon

ANN:

Artificial neural network

b i :

Bias of the ith node

BM:

Mediterranean biomass

C in :

Initial concentration, mg/g

Cu:

Copper

I s :

Inonic strength, mol m3

J :

Jacobian matrix of weights and biases derivate

L :

ANN output dimension

M :

Number of iterations

Ni:

Nickel

OK:

Olive kernel

OP:

Olive pulp

Pb:

Lead

s :

Neuron inputs sum

S a :

Agitation speed, round per minute (rpm)

T :

Temperature, °C

t c :

Contact time

w ij :

Connection weight between node and node j

WCC:

Waste charred cereal

W d :

Adsorbent weight

y i :

ith desired output

z i :

ith neuron output

μ :

Learning coefficient

ε i :

Output error of the ith node

i :

Node and output index

j :

Node index

References

  1. Mohand D, Pittman CU, Seele P (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142(1–2):1–53

    Article  Google Scholar 

  2. Nacim R, Tahir S (2001) Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Res 33(11):3982–3986

    Google Scholar 

  3. Boren A, Bowen DE, Santos FR (2003) Understanding biotechnology, 1st edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  4. Ullmann (2002) Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

  5. Vogel H (1997) Fermentation and biochemical engineering handbook principles, process design, and equipment, 2nd edn. Noyes, Westwood

    Google Scholar 

  6. Meinck M (1982) Les eaux résiduaires industrielles. Masson & Cie, Paris

    Google Scholar 

  7. Hendricks D (2010) Fundamentals of water treatment unit processes: physical, chemical, and biological. CRC Press, Boca Raton

    Google Scholar 

  8. Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S (2003) Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J Porous Mater 1:159–170

    Article  Google Scholar 

  9. Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater B97:219–243

    Article  Google Scholar 

  10. Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33(11):2469–2479

    Article  Google Scholar 

  11. Bal Y, Bal KE, Lallam A (2003) Removal of Bi (III) and Zn (II) by nonliving Streptomyces rimosus biomass from nitric solutions. Eur J Miner Process Environ Prot 3(1):42–48

    Google Scholar 

  12. Kong B, Tang B, Liu X, Zeng X, Duan H, Luo S, Wei W (2009) Kinetic and equilibrium studies for the adsorption process of cadmium (II) and copper (II) onto Pseudomonas aeruginosa using square wave anodic stripping voltammetry method. J Hazard Mater 167(1):455–460

    Article  Google Scholar 

  13. Angelova N, Henkler D (1999) Rationalizing the design of polymeric biomaterials. Trends Biotechnol 17:409–420

    Article  Google Scholar 

  14. Cardenas G, Orlando P, Edelio T (2001) Synthesis and applications of chitosan mercaptanes as heavy metal retention agent. Int J Biol Macromol 28:167–174

    Article  Google Scholar 

  15. Chiron N, Guilet R, Deydier E (2003) Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetic models. Water Res 37:3079–3086

    Article  Google Scholar 

  16. Dupont L, Guillon E, Bouanda J, Dumonceau J, Laplincourt M (2002) EXAFS and XANES studies of retention of copper and lead by a lignocellulosic biomaterial. Environ Sci Technol 36:5062–5066

    Article  Google Scholar 

  17. Dias MA, Castro HF, Pimentel F, Gomes NCM, Rosa CA, Linardi VR (2000) Removal of heavy metals from stainless steel effluents by waste biomass from Brazilian alcoholic beverage production. World J Microbiol Biotechnol 16:107–108

    Article  Google Scholar 

  18. Fenga D, Aldrich C (2004) Adsorption of heavy metals by biomaterials derived from the marine alga Ecklonia maxima. Hydrometallurgy 73:1–10

    Article  Google Scholar 

  19. Dakiky M, Khamis M, Manassra A, Mereb M (2002) Selective adsorption of chromium (VI) in industrial wastewater using low-cost abundantly available adsorbents. Adv Environ Res 6:533–540

    Article  Google Scholar 

  20. Kadirvelu K, Thamaraiselvi K, Namasivayam C (2001) Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresour Technol 76:63–65

    Article  Google Scholar 

  21. Dong A, Xie J, Wang W, Yu L, Liu Q, Yin Y (2010) A novel method for amino starch preparation and its adsorption for Cu(II) and Cr(VI). J Hazard Mater 181(1–3):448–454

    Article  Google Scholar 

  22. Meneses M, Llobet J, Granero S, Schuhmacher M, Domingo J (1999) Monitoring metals in the vicinity of a municipal waste incinerator: temporal variation in soils and vegetation. Sci Total Environ 226(2–3):157–164

    Article  Google Scholar 

  23. Al-Othman Z, Ali R, Mu N (2012) Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies. Chem Eng J 184:238–247

    Article  Google Scholar 

  24. Low KS, Lee CK, Leo AC (1995) Removal of metals from electroplating wastes using banana pith. Bioresour Technol 51(2–3):227–231

    Article  Google Scholar 

  25. Ho YS, McKay G (2003) Sorption of dyes and copper ions onto biosorbents. Process Biochem 38(7):1047–1061

    Article  Google Scholar 

  26. Marshall WE, Wartelle LH, Boler DE, Johns M, Toles CA (1999) Toles enhanced metal adsorption by soybean hulls modified with citric acid. Bioresour Technol 69(3):263–268

    Article  Google Scholar 

  27. Aydın H, Bulut Y, Yerlikaya Ç (2008) Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. J Environ Manage 87(1):37–45

    Article  Google Scholar 

  28. Zaggout FR (2001) Removal of copper from water by decaying Tamarix gallica leaves. Asian J Chem 13(2):639–650

    Google Scholar 

  29. Qiang Y, Xinshu Z, Qiong W, Wei Q, Xuesong T, Zhenhong Y (2012) Hydrolysis of sweet sorghum bagasse and eucalyptus wood chips with liquid hot water. Bioresour Technol 116:220–225

    Article  Google Scholar 

  30. Darsey JA (2014) Neural networks in chemical and physical systems. World Scientific, Singapore

    Google Scholar 

  31. Schalkoff RJ (1997) Artificial neural networks. McGraw-Hill, New York

    MATH  Google Scholar 

  32. Hassoun M (2003) Fundamentals of artificial neural networks. A Bradford Book, MIT Press, Cambridge

    Google Scholar 

  33. Jeon C (2011) Removal of copper ion using rice hulls. J Ind Eng Chem 17(3):517–520

    Article  Google Scholar 

  34. Ncibi MC (2008) Étude de la biosorption du chrome (VI) par une biomasse méditerranéenne: Posidonia oceanica (L.) delile. J Water Sci 21(4):441–449

    Google Scholar 

  35. Boulkrah H (2008) Etude comparative de l’adsorption des ions de plomb sur différents adsorbants. Théses et mémoires Faculté des sciences Mémoires de Magistère : Chimie Option:Pollution Chimique et Environnement, Skikda

    Google Scholar 

  36. Fiola N, Villaescusaa I, Martínezb M, Mirallesb N, Pochc J, Serarolsc J (2006) Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep Purif Technol 50(1):132–140

    Article  Google Scholar 

  37. Gharaibeh S, Abu-el-sha’r WY, Al-Kofahi M (1998) Removal of selected heavy metals from aqueous solutions using processed solid residue of olive mill products. Water Res 32(2):498–502

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia Rebouh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rebouh, S., Bouhedda, M., Hanini, S., Djellal, A. (2015). Neural Modeling Adsorption of Copper, Chromium, Nickel, and Lead from Aqueous Solution by Natural Wastes. In: Dincer, I., Colpan, C., Kizilkan, O., Ezan, M. (eds) Progress in Clean Energy, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-16709-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16709-1_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16708-4

  • Online ISBN: 978-3-319-16709-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics