Skip to main content

Differential Methylation Analysis with Next-Generation Sequencing

  • Chapter
Next Generation Sequencing in Cancer Research, Volume 2
  • 3123 Accesses

Abstract

DNA methylation is an important epigenetic modification of DNA sequences, which could potentially affect gene expression and final phenotypes. Abnormal methylation has been discovered in many types of cancers and other human diseases. Detecting differentially methylated loci (DML) and differentially methylated regions (DMRs) is critical in understanding the genetic mechanism of cancer and identifying biomarkers and treatment targets, which could be used for cancer diagnosis, prognosis, prevention, and treatment. Next-generation sequencing (NGS) has been widely used to generate genome-wide methylation data. These data provide unique challenges in the differential methylation analysis at genomic levels. In this paper, we discuss these challenges and some statistical and computational approaches for detecting DML and DMRs for NGS methylation data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Maher B. Personal genomes: the case of the missing heritability. Nat News. 2008;456:18–21. doi:10.1038/456018a.

    Article  CAS  Google Scholar 

  2. Eichler EE, Flint J, Gibson G, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11:446–50. doi:10.1038/nrg2809.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Handel AE, Ebers GC, Ramagopalan SV. Epigenetics: molecular mechanisms and implications for disease. Trends Mol Med. 2010;16:7–16. doi:10.1016/j.molmed.2009.11.003.

    Article  CAS  PubMed  Google Scholar 

  4. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63. doi:10.1038/nature02625.

    Article  CAS  PubMed  Google Scholar 

  5. Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6:597–610. doi:10.1038/nrg1655.

    Article  CAS  PubMed  Google Scholar 

  6. Ferguson-Smith AC, Surani MA. Imprinting and the epigenetic asymmetry between parental genomes. Science. 2001;293:1086–9. doi:10.1126/science.1064020.

    Article  CAS  PubMed  Google Scholar 

  7. Lee JT. Molecular links between X-inactivation and autosomal imprinting: X-inactivation as a driving force for the evolution of imprinting? Curr Biol. 2003;13:R242–54. doi:10.1016/S0960-9822(03)00162-3.

    Article  CAS  PubMed  Google Scholar 

  8. Ehrlich M, Gama-Sosa MA, Huang L-H, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Res. 1982;10:2709–21. doi:10.1093/nar/10.8.2709.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Esteller M, Herman JG. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol. 2002;196:1–7. doi:10.1002/path.1024.

    Article  CAS  PubMed  Google Scholar 

  10. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4:143–53. doi:10.1038/nrc1279.

    Article  CAS  PubMed  Google Scholar 

  11. Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986;321:209–13. doi:10.1038/321209a0.

    Article  CAS  PubMed  Google Scholar 

  12. Issa J-P. CpG island methylator phenotype in cancer. Nat Rev Cancer. 2004;4:988–93. doi:10.1038/nrc1507.

    Article  CAS  PubMed  Google Scholar 

  13. Müller HM, Oberwalder M, Fiegl H, et al. Methylation changes in faecal DNA: a marker for colorectal cancer screening? The Lancet. 2004;363:1283–5. doi:10.1016/S0140-6736(04)16002-9.

    Article  Google Scholar 

  14. Nakamura N, Takenaga K. Hypomethylation of the metastasis-associated S100A4 gene correlates with gene activation in human colon adenocarcinoma cell lines. Clin Exp Metastasis. 1998;16:471–9. doi:10.1023/A:1006589626307.

    Article  CAS  PubMed  Google Scholar 

  15. Zilberman D, Henikoff S. Genome-wide analysis of DNA methylation patterns. Development. 2007;134:3959–65. doi:10.1242/dev.001131.

    Article  CAS  PubMed  Google Scholar 

  16. Yan PS, Shi H, Rahmatpanah F, et al. Differential distribution of DNA methylation within the RASSF1A CpG island in breast cancer. Cancer Res. 2003;63:6178–86.

    CAS  PubMed  Google Scholar 

  17. Vucetic Z, Kimmel J, Totoki K, et al. Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology. 2010;151:4756–64. doi:10.1210/en.2010-0505.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Xu H, Podolsky RH, Ryu D, et al. A method to detect differentially methylated loci with next-generation sequencing. Genet Epidemiol. 2013;37:377–82. doi:10.1002/gepi.21726.

    Article  PubMed  Google Scholar 

  19. Rao JNK, Scott AJ. A simple method for the analysis of clustered binary data. Biometrics. 1992;48:577–85. doi:10.2307/2532311.

    Article  CAS  PubMed  Google Scholar 

  20. Akalin A, Garrett-Bakelman FE, Kormaksson M, et al. Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. PLoS Genet. 2012;8:e1002781. doi:10.1371/journal.pgen.1002781.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Bediaga NG, Acha-Sagredo A, Guerra I, et al. DNA methylation epigenotypes in breast cancer molecular subtypes. Breast Cancer Res BCR. 2010;12:R77. doi:10.1186/bcr2721.

    Article  Google Scholar 

  22. Yang Y, Nephew K, Kim S. A novel k-mer mixture logistic regression for methylation susceptibility modeling of CpG dinucleotides in human gene promoters. BMC Bioinformatics. 2012;13 Suppl 3:S15. doi:10.1186/1471-2105-13-S3-S15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Akalin A, Kormaksson M, Li S, et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012;13:R87. doi:10.1186/gb-2012-13-10-r87.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Spyrou C, Stark R, Lynch AG, Tavaré S. BayesPeak: Bayesian analysis of ChIP-seq data. BMC Bioinformatics. 2009;10:299. doi:10.1186/1471-2105-10-299.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Zheng S, Chen L. A hierarchical Bayesian model for comparing transcriptomes at the individual transcript isoform level. Nucleic Acids Res. 2009;37:e75. doi:10.1093/nar/gkp282.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Wu G, Yi N, Absher D, Zhi D. Statistical quantification of methylation levels by next-generation sequencing. PLoS One. 2011;6:e21034. doi:10.1371/journal.pone.0021034.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Down TA, Rakyan VK, Turner DJ, et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol. 2008;26:779–85. doi:10.1038/nbt1414.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hardcastle TJ, Kelly KA. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics. 2010;11:422. doi:10.1186/1471-2105-11-422.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Hardcastle TJ, Kelly KA. Empirical Bayesian analysis of paired high-throughput sequencing data with a beta-binomial distribution. BMC Bioinformatics. 2013;14:135. doi:10.1186/1471-2105-14-135.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kruschke JK. What to believe: Bayesian methods for data analysis. Trends Cogn Sci. 2010;14:293–300. doi:10.1016/j.tics.2010.05.001.

    Article  PubMed  Google Scholar 

  31. Chen Z, Liu Q, Nadarajah S. A new statistical approach to detecting differentially methylated loci for case control Illumina array methylation data. Bioinformatics. 2012;28:1109–13. doi:10.1093/bioinformatics/bts093.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Huang H, Chen Z, Huang X. Age-adjusted nonparametric detection of differential DNA methylation with case-control designs. BMC Bioinformatics. 2013;14:86. doi:10.1186/1471-2105-14-86.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Neuhäuser M. One-sided nonparametric tests for ordinal data. Percept Mot Skills. 2005;101:510–4.

    PubMed  Google Scholar 

  34. Wang D, Yan L, Hu Q, et al. IMA: an R package for high-throughput analysis of Illumina’s 450K Infinium methylation data. Bioinformatics. 2012;28:729–30. doi:10.1093/bioinformatics/bts013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Choufani S, Shapiro JS, Susiarjo M, et al. A novel approach identifies new differentially methylated regions (DMRs) associated with imprinted genes. Genome Res. 2011;21:465–76. doi:10.1101/gr.111922.110.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Pei L, Choi J-H, Liu J, et al. Genome-wide DNA methylation analysis reveals novel epigenetic changes in chronic lymphocytic leukemia. Epigenetics Off J DNA Methylation Soc. 2012;7:567–78. doi:10.4161/epi.20237.

    Article  CAS  Google Scholar 

  37. Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462:315–22. doi:10.1038/nature08514.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Pelizzola M, Ecker JR. The DNA methylome. FEBS Lett. 2011;585:1994–2000. doi:10.1016/j.febslet.2010.10.061.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Jaffe AE, Feinberg AP, Irizarry RA, Leek JT. Significance analysis and statistical dissection of variably methylated regions. Biostatistics. 2012;13:166–78. doi:10.1093/biostatistics/kxr013.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Zhang Y, Liu H, Lv J, et al. QDMR: a quantitative method for identification of differentially methylated regions by entropy. Nucleic Acids Res. 2011;39:e58. doi:10.1093/nar/gkr053.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Hansen KD, Langmead B, Irizarry RA. BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol. 2012;13:R83. doi:10.1186/gb-2012-13-10-r83.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Jaffe AE, Murakami P, Lee H, et al. Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int J Epidemiol. 2012;41:200–9. doi:10.1093/ije/dyr238.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Hebestreit K, Dugas M, Klein H-U. Detection of significantly differentially methylated regions in targeted bisulfite sequencing data. Bioinformatics. 2013;29:1647–53. doi:10.1093/bioinformatics/btt263.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Xu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xu, H. (2015). Differential Methylation Analysis with Next-Generation Sequencing. In: Wu, W., Choudhry, H. (eds) Next Generation Sequencing in Cancer Research, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-15811-2_14

Download citation

Publish with us

Policies and ethics