Skip to main content

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

DNA methylation is an important enzymatic covalent modification of DNA that plays an important role in genome regulation. DNA methylation patterns are fashioned during development and could be altered in response to experience and exposure. Aberrations in DNA methylation patterns are noted in cancer and other diseases. It is therefore extremely important to accurately quantify DNA methylation states for studying physiology and disease as well as for using DNA methylation markers in diagnosis. Here, we review the most commonly used methods for quantifying DNA methylation states of single genes: Pyrosequencing, Quantitative Methylated DNA Immunoprecipitation (qMeDIP), and methylation-sensitive high resolution melting (MS-HRM). Each method is described and required steps are detailed. We also discuss the advantages and disadvantages of the different methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

dsDNA:

double-stranded DNA

FFPE :

Formalin-fixed paraffin-embedded tissue

GWAS:

Genome-Wide Association Study

MeDIP:

methylated DNA immunoprecipitation

RRBS:

Reduced representation bisulfite sequencing

References

  1. Ronaghi M et al (1998) PCR-introduced loop structure as primer in DNA sequencing. Biotechniques 25(5):876, -8, 880-2, 884

    CAS  PubMed  Google Scholar 

  2. Worm J, Aggerholm A, Guldberg P (2001) In-tube DNA methylation profiling by fluorescence melting curve analysis. Clin Chem 47(7):1183–1189

    CAS  PubMed  Google Scholar 

  3. Xiong Z, Laird PW (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25(12):2532–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ronaghi M, Uhlen M, Nyren P (1998) A sequencing method based on real-time pyrophosphate. Science 281(5375):363, 365

    Article  CAS  PubMed  Google Scholar 

  5. Langaee T, Ronaghi M (2005) Genetic variation analyses by Pyrosequencing. Mutat Res 573(1-2):96–102

    Article  CAS  PubMed  Google Scholar 

  6. Ogino S et al (2005) Sensitive sequencing method for KRAS mutation detection by Pyrosequencing. J Mol Diagn 7(3):413–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11(1):3–11

    Article  CAS  PubMed  Google Scholar 

  8. Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94(3):441–448

    Article  CAS  PubMed  Google Scholar 

  9. Petropoulos S, Matthews SG, Szyf M (2014) Adult glucocorticoid exposure leads to transcriptional and DNA methylation changes in nuclear steroid receptors in the hippocampus and kidney of mouse male offspring. Biol Reprod 90(2):43

    Article  PubMed  Google Scholar 

  10. Kirby KS (1956) A new method for the isolation of ribonucleic acids from mammalian tissues. Biochem J 64(3):405–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ebeling W et al (1974) Proteinase K from Tritirachium album Limber. Eur J Biochem 47(1):91–97

    Article  CAS  PubMed  Google Scholar 

  12. Manchester KL (1996) Use of UV methods for measurement of protein and nucleic acid concentrations. Biotechniques 20(6):968–970

    CAS  PubMed  Google Scholar 

  13. Glasel JA (1995) Validity of nucleic acid purities monitored by 260nm/280nm absorbance ratios. Biotechniques 18(1):62–63

    CAS  PubMed  Google Scholar 

  14. Huberman JA (1995) Importance of measuring nucleic acid absorbance at 240 nm as well as at 260 and 280 nm. Biotechniques 18(4):636

    CAS  PubMed  Google Scholar 

  15. Manchester KL (1995) Value of A260/A280 ratios for measurement of purity of nucleic acids. Biotechniques 19(2):208–210

    CAS  PubMed  Google Scholar 

  16. Hayatsu H et al (1970) Reaction of sodium bisulfite with uracil, cytosine, and their derivatives. Biochemistry 9(14):2858–2865

    Article  CAS  PubMed  Google Scholar 

  17. Robert Shapiro RES, Welcher M (1970) Reactions of uracil and cytosine derivatives with sodium bisulfite. J Am Chem Soc 92(2):422–424

    Article  Google Scholar 

  18. Frommer M et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Warnecke PM et al (1997) Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res 25(21):4422–4426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Holmes EE et al (2014) Performance evaluation of kits for bisulfite-conversion of DNA from tissues, cell lines, FFPE tissues, aspirates, lavages, effusions, plasma, serum, and urine. PLoS One 9(4):e93933

    Article  PubMed  PubMed Central  Google Scholar 

  21. Leontiou CA et al (2015) Bisulfite conversion of DNA: performance comparison of different kits and methylation quantitation of epigenetic biomarkers that have the potential to be used in non-invasive prenatal testing. PLoS One 10(8):e0135058

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tost J, Gut IG (2007) DNA methylation analysis by pyrosequencing. Nat Protoc 2(9):2265–2275

    Article  CAS  PubMed  Google Scholar 

  23. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18(11):1427–1431

    Article  CAS  PubMed  Google Scholar 

  24. Aranyi T et al (2006) The BiSearch web server. BMC Bioinformatics 7:431

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kampke T, Kieninger M, Mecklenburg M (2001) Efficient primer design algorithms. Bioinformatics 17(3):214–225

    Article  CAS  PubMed  Google Scholar 

  26. Shen L, et al. (2007) Optimizing annealing temperature overcomes bias in bisulfite PCR methylation analysis. Biotechniques 42(1): 48, 50, 52 passim

    Google Scholar 

  27. Korbie DJ, Mattick JS (2008) Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc 3(9):1452–1456

    Article  CAS  PubMed  Google Scholar 

  28. Tost J, El abdalaoui H, Gut IG (2006) Serial pyrosequencing for quantitative DNA methylation analysis. Biotechniques 40(6): 721–722, 724, 726

    Google Scholar 

  29. Weber M et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37(8):853–862

    Article  CAS  PubMed  Google Scholar 

  30. Jin SG, Kadam S, Pfeifer GP (2010) Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res 38(11):e125

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bustin SA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    Article  CAS  PubMed  Google Scholar 

  32. Wrobel G, Kokocinski F, Lichter P (2004) AutoPrime: selecting primers for expressed sequences. Genome Biol 5(5):P11

    Article  Google Scholar 

  33. Petropoulos S et al (2015) Gestational diabetes alters offspring DNA methylation profiles in human and rat: identification of key pathways involved in endocrine system disorders, insulin signaling, diabetes signaling, and ILK signaling. Endocrinology 156(6):2222–2238

    Article  CAS  PubMed  Google Scholar 

  34. Labonte B et al (2012) Genome-wide epigenetic regulation by early-life trauma. Arch Gen Psychiatry 69(7):722–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lisanti S, von Zglinicki T, Mathers JC (2012) Standardization and quality controls for the methylated DNA immunoprecipitation technique. Epigenetics 7(6):615–625

    Article  CAS  PubMed  Google Scholar 

  36. Wittwer CT et al (1997) The LightCycler: a microvolume multisample fluorimeter with rapid temperature control. Biotechniques 22(1):176–181

    CAS  PubMed  Google Scholar 

  37. Wojdacz TK, Dobrovic A (2007) Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res 35(6), e41

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wojdacz TK, Hansen LL (2006) Reversal of PCR bias for improved sensitivity of the DNA methylation melting curve assay. Biotechniques 41(3):274, 276, 278

    Article  CAS  PubMed  Google Scholar 

  39. Wojdacz TK et al (2010) Limitations and advantages of MS-HRM and bisulfite sequencing for single locus methylation studies. Expert Rev Mol Diagn 10(5):575–580

    Article  CAS  PubMed  Google Scholar 

  40. Rubatino FV et al (2015) Manipulation of primer affinity improves high-resolution melting accuracy for imprinted genes. Genet Mol Res 14(3):7864–7872

    Article  CAS  PubMed  Google Scholar 

  41. Wojdacz TK, Dobrovic A, Hansen LL (2008) Methylation-sensitive high-resolution melting. Nat Protoc 3(12):1903–1908

    Article  CAS  PubMed  Google Scholar 

  42. Wittwer CT et al (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49(6 Pt 1):853–860

    Article  CAS  PubMed  Google Scholar 

  43. Monis PT, Giglio S, Saint CP (2005) Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Anal Biochem 340(1):24–34

    Article  CAS  PubMed  Google Scholar 

  44. Radvanszky J et al (2015) Comparison of different DNA binding fluorescent dyes for applications of high-resolution melting analysis. Clin Biochem 48(9):609–616

    Article  CAS  PubMed  Google Scholar 

  45. Candiloro IL et al (2008) Rapid analysis of heterogeneously methylated DNA using digital methylation-sensitive high resolution melting: application to the CDKN2B (p15) gene. Epigenetics Chromatin 1(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  46. Candiloro IL, Mikeska T, Dobrovic A (2011) Assessing combined methylation-sensitive high resolution melting and pyrosequencing for the analysis of heterogeneous DNA methylation. Epigenetics 6(4):500–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ronaghi M et al (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242(1):84–89

    Article  CAS  PubMed  Google Scholar 

  48. Amornpisutt R, Sriraksa R, Limpaiboon T (2012) Validation of methylation-sensitive high resolution melting for the detection of DNA methylation in cholangiocarcinoma. Clin Biochem 45(13–14):1092–1094

    Article  CAS  PubMed  Google Scholar 

  49. Migheli F et al (2013) Comparison study of MS-HRM and pyrosequencing techniques for quantification of APC and CDKN2A gene methylation. PLoS One 8(1):e52501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

D.C. is supported by fellowship from the Israel Cancer Research Foundation. S.P. is supported by the Mats Sundin Fellowship in Developmental Health.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Cheishvili, D., Petropoulos, S., Christiansen, S., Szyf, M. (2017). Targeted DNA Methylation Analysis Methods. In: Stefanska, B., MacEwan, D. (eds) Epigenetics and Gene Expression in Cancer, Inflammatory and Immune Diseases. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6743-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6743-8_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6741-4

  • Online ISBN: 978-1-4939-6743-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics