Skip to main content

The Effect of Taurine Supplementation on Glucose Homeostasis: The Role of Insulin-Degrading Enzyme

  • Conference paper
Taurine 9

Abstract

Taurine is a semi-essential sulfur-containing amino acid derived from the metabolism of methionine and cysteine. Taurine controls several biological processes, including glucose homeostasis. The effects of taurine supplementation on insulin secretion and its effects on peripheral organs have been previously described. However, there are no data describing the effects of this amino acid on insulin clearance and the expression of insulin-degrading enzyme (IDE).

Therefore, the aim of the present study was to assess the impact of taurine supplementation on IDE expression in the liver and on insulin clearance.

Mice supplemented with taurine exhibited increased glucose tolerance and insulin sensitivity, as well as lower food intake and reduced fat pad compared with controls, but they presented no changes in the Lee index, body weight, or insulin secretion by pancreatic islets. In addition, taurine supplementation resulted in increased hepatic IDE expression, which may have affected insulin clearance. We hypothesize that supplementation with taurine, which is important for the control of glucose homeostasis, might stimulate hepatic IDE expression and insulin clearance, and this may explain the improvement in glucose tolerance, despite the lack of on effect on insulin secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AKT:

Protein kinase B

GSIS:

Glucose-stimulated insulin secretion

HFD:

High-fat diet

IDE:

Insulin-degrading enzyme

Tau:

Taurine

References

  • Abdul-Hay SO, Kang D, McBride M, Li L, Zhao J, Leissring MA (2011) Deletion of insulin-degrading enzyme elicits antipodal, age-dependent effects on glucose and insulin tolerance. PLoS One 6:e20818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ahrén B, Thomaseth K, Pacini G (2005) Reduced insulin clearance contributes to the increased insulin levels after administration of glucagon-like peptide 1 in mice. Diabetologia 48:2140–2146

    Article  PubMed  Google Scholar 

  • Amata O, Marino T, Russo N, Toscano M (2009) Human insulin-degrading enzyme working mechanism. J Am Chem Soc 131:14804–14811

    Article  CAS  PubMed  Google Scholar 

  • Authier F, Posner BI, Bergeron JJ (1996) Insulin-degrading enzyme. Clin Invest Med 19:149–160

    CAS  PubMed  Google Scholar 

  • Batista TM, Ribeiro RA, da Silva PM, Camargo RL, Lollo PC, Boschero AC, Carneiro EM (2013) Taurine supplementation improves liver glucose control in normal protein and malnourished mice fed a high-fat diet. Mol Nutr Food Res 57(3):423–434

    Article  CAS  PubMed  Google Scholar 

  • Boden G, Ruiz J, Kim CJ, Chen X (1996) Effects of prolonged glucose infusion on insulin secretion, clearance, and action in normal subjects. Am J Physiol 270:E251–E258

    CAS  PubMed  Google Scholar 

  • Brandimarti P, Costa-Júnior JM, Ferreira SM, Protzek AO, Santos GJ, Carneiro EM, Boschero AC, Rezende LF (2013) Cafeteria diet inhibits insulin clearance by reduced insulin-degrading enzyme expression and mRNA splicing. J Endocrinol 219:173–182

    Article  CAS  PubMed  Google Scholar 

  • Butterfield WJ (1970) Insulin clearance in nondiabetic and diabetic subjects. Panminerva Med 12:233–235

    CAS  PubMed  Google Scholar 

  • Camargo RL, Batista TM, Ribeiro RA, Velloso LA, Boschero AC, Carneiro EM (2013) Effects of taurine supplementation upon food intake and central insulin signaling in malnourished mice fed on a high-fat diet. Adv Exp Med Biol 776:93–103

    Article  CAS  PubMed  Google Scholar 

  • Cappelli AP, Zoppi CC, Barbosa-Sampaio HC, Costa JM Jr, Protzek AO, Morato PN, Boschero AC, Carneiro EM (2014) Taurine-induced insulin signalling improvement of obese malnourished mice is associated with redox balance and protein phosphatases activity modulation. Liver Int 34(5):771–783

    Article  CAS  PubMed  Google Scholar 

  • Carneiro EM, Latorraca MQ, Araujo E, Beltrá M, Oliveras MJ, Navarro M, Berná G, Bedoya FJ, Velloso LA, Soria B, Martín F (2009) Taurine supplementation modulates glucose homeostasis and islet function. J Nutr Biochem 20:503–511

    Article  CAS  PubMed  Google Scholar 

  • Cuttitta CM, Guariglia SR, Idrissi AE, L’amoreaux WJ (2013) Taurine’s effects on the neuroendocrine functions of pancreatic β cells. Adv Exp Med Biol 775:299–310

    Article  CAS  PubMed  Google Scholar 

  • De la Puerta C, Arrieta FJ, Balsa JA, Botella-Carretero JI, Zamarrón I, Vázquez C (2010) Taurine and glucose metabolism: a review. Nutr Hosp 25:910–919

    PubMed  Google Scholar 

  • Duckworth WC, Bennett RG, Hamel FG (1998) Insulin degradation: progress and potential. Endocr Rev 19:608–624

    CAS  PubMed  Google Scholar 

  • Erdmann J, Kallabis B, Oppel U, Sypchenko O, Wagenpfeil S, Schusdziarra V (2008) Development of hyperinsulinemia and insulin resistance during the early stage of weight gain. Am J Physiol Endocrinol Metab 294:E568–E575

    Article  CAS  PubMed  Google Scholar 

  • Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guenette S (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A 100:4162–4167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farris W, Mansourian S, Leissring MA, Eckman EA, Bertram L, Eckman CB, Tanzi RE, Selkoe DJ (2004) Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid beta-protein. Am J Pathol 164:1425–1434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goodarzi MO, Cui J, Chen YD, Hsueh WA, Guo X, Rotter JI (2011) Fasting insulin reflects heterogeneous physiological processes: role of insulin clearance. Am J Physiol Endocrinol Metab 301:E402–E408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Groves CJ, Wiltshire S, Smedley D, Owen KR, Frayling TM, Walker M, Hitman GA, Levy JC, O’Rahilly S, Menzel S, Hattersley AT, McCarthy MI (2003) Association and haplotype analysis of the insulin-degrading enzyme (IDE) gene, a strong positional and biological candidate for type 2 diabetes susceptibility. Diabetes 52:1300–1305

    Article  CAS  PubMed  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    CAS  PubMed  Google Scholar 

  • Kuo WL, Montag AG, Rosner MR (1993) Insulin-degrading enzyme is differentially expressed and developmentally regulated in various rat tissues. Endocrinology 132:604–611

    CAS  PubMed  Google Scholar 

  • Lorenzo C, Hanley AJ, Wagenknecht LE, Rewers MJ, Stefanovski D, Goodarzi MO, Haffner SM (2013) Relationship of insulin sensitivity, insulin secretion, and adiposity with insulin clearance in a multiethnic population: the insulin Resistance Atherosclerosis study. Diabetes Care 36:101–103

    Article  PubMed Central  PubMed  Google Scholar 

  • Matveyenko AV, Veldhuis JD, Butler PC (2008) Adaptations in pulsatile insulin secretion, hepatic insulin clearance, and beta-cell mass to age-related insulin resistance in rats. Am J Physiol Endocrinol Metab 295:E832–E841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meier JJ, Veldhuis JD, Butler PC (2005) Pulsatile insulin secretion dictates systemic insulin delivery by regulating hepatic insulin extraction in humans. Diabetes 54:1649–1656

    Article  CAS  PubMed  Google Scholar 

  • Mittelman SD, Van Citters GW, Kim SP, Davis DA, Dea MK, Hamilton-Wessler M, Bergman RN (2000) Longitudinal compensation for fat-induced insulin resistance includes reduced insulin clearance and enhanced beta-cell response. Diabetes 49:2116–2125

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Bae JH, Kim SY, Lim JG, Baek WK, Kwon TK, Suh SI, Park JW, Lee IK, Ashcroft FM, Song DK (2004) Inhibition of ATP-sensitive K+ channels by taurine through a benzamido-binding site on sulfonylurea receptor 1. Biochem Pharmacol 67:1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Cho YR, Kim HJ, Hong EG, Higashimori T, Lee SJ, Goldberg IJ, Shulman GI, Najjar SM, Kim JK (2006) Mechanism of glucose intolerance in mice with dominant negative mutation of CEACAM1. Am J Physiol Endocrinol Metab 291:E517–E524

    Article  CAS  PubMed  Google Scholar 

  • Rezende LF, Stoppiglia LF, Souza KL, Negro A, Langone F, Boschero AC (2007) Ciliary neurotrophic factor promotes survival of neonatal rat islets via the BCL-2 anti-apoptotic pathway. J Endocrinol 195:157–165

    Article  CAS  PubMed  Google Scholar 

  • Rezende LF, Vieira AS, Negro A, Langone F, Boschero AC (2009) Ciliary neurotrophic factor (CNTF) signals through STAT3-SOCS3 pathway and protects rat pancreatic islets from cytokine-induced apoptosis. Cytokine 46:65–71

    Article  CAS  PubMed  Google Scholar 

  • Rezende LF, Santos GJ, Santos-Silva JC, Carneiro EM, Boschero AC (2012) Ciliary neurotrophic factor (CNTF) protects non-obese Swiss mice against type 2 diabetes by increasing beta cell mass and reducing insulin clearance. Diabetologia 55:1495–1504

    Article  CAS  PubMed  Google Scholar 

  • Rezende LF, Camargo RL, Branco RC, Cappelli AP, Boschero AC, Carneiro EM (2014) Reduced insulin clearance and lower insulin-degrading enzyme expression in the liver might contribute to the thrifty phenotype of protein-restricted mice. Br J Nutr 18:1–8

    Google Scholar 

  • Ribeiro RA, Santos-Silva JC, Vettorazzi JF, Cotrim BB, Mobiolli DD, Boschero AC, Carneiro EM (2012) Taurine supplementation prevents morpho-physiological alterations in high-fat diet mice pancreatic β-cells. Amino Acids 43:1791–1801

    Article  CAS  PubMed  Google Scholar 

  • Ripps H, Shen W (2012) Review: taurine: a “very essential” amino acid. Mol Vis 18:2673–2686

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rudovich N, Pivovarova O, Fisher E, Fischer-Rosinsky A, Spranger J, Möhlig M, Schulze MB, Boeing H, Pfeiffer AF (2009) Polymorphisms within insulin-degrading enzyme (IDE) gene determine insulin metabolism and risk of type 2 diabetes. J Mol Med 87:1145–1151

    Article  CAS  PubMed  Google Scholar 

  • Santos GJ, Oliveira CA, Boschero AC, Rezende LF (2011) CNTF protects MIN6 cells against apoptosis induced by Alloxan and IL-1β through downregulation of the AMPK pathway. Cell Signal 23:1669–1676

    Article  CAS  PubMed  Google Scholar 

  • Schaffer SW, Jong CJ, Warner D, Ito T, Azuma J (2013) Taurine deficiency and MELAS are closely related syndromes. Adv Exp Med Biol 776:153–165

    Article  CAS  PubMed  Google Scholar 

  • Slominskiĭ PA, Pivovarova OV, Shadrina MI, Artem’eva AV, Pfaipffer FG, Rudovich NN, Agadzhanian SE, Pronin VS, Limborskaia SA (2009) Association of insulinase gene polymorphisms with type 2 diabetes mellitus in patients from the Moscow population. Genetika 45:127–131

    PubMed  Google Scholar 

  • Tamaki M, Fujitani Y, Hara A, Uchida T, Tamura Y, Takeno K, Kawaguchi M, Watanabe T, Ogihara T, Fukunaka A, Shimizu T, Mita T, Kanazawa A, Imaizumi MO, Abe T, Kiyonari H, Hojyo S, Fukada T, Kawauchi T, Nagamatsu S, Hirano T, Kawamori R, Watada H (2013) The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J Clin Invest 123:4513–4524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trachtman H, Futterweit S, Maesaka J, Ma C, Valderrama E, Fuchs A, Tarectecan AA, Rao PS, Sturman JA, Boles TH (1995) Taurine ameliorates chronic streptozocin-induced diabetic nephropathy in rats. Am J Physiol 269:F429–F438

    CAS  PubMed  Google Scholar 

  • Valera Mora ME, Scarfone A, Calvani M, Greco AV, Mingrone G (2003) Insulin clearance in obesity. J Am Coll Nutr 22:487–493

    Article  PubMed  Google Scholar 

  • Vettorazzi JF, Ribeiro RA, Santos-Silva JC, Borck PC, Batista TM, Nardelli TR, Boschero AC, Carneiro EM (2014) Taurine supplementation increases KATP channel protein content, improving Ca (2+) handling and insulin secretion in islets from malnourished mice fed on a high-fat diet. Amino Acids 46(9):2123–2136

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present study was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Ludemann Camargo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Camargo, R.L. et al. (2015). The Effect of Taurine Supplementation on Glucose Homeostasis: The Role of Insulin-Degrading Enzyme. In: Marcinkiewicz, J., Schaffer, S. (eds) Taurine 9. Advances in Experimental Medicine and Biology, vol 803. Springer, Cham. https://doi.org/10.1007/978-3-319-15126-7_57

Download citation

Publish with us

Policies and ethics