Skip to main content

Taurine Targets the GluN2b-Containing NMDA Receptor Subtype

  • Conference paper
Taurine 9

Abstract

As an endogenous neuromodulator in the CNS, Taurine interacts with TAG (6-aminomethyl-3-methyl-4H-1,2,4-benzothiadiazine 1,1-dioxide)-sensitive and TAG-insensitive receptors. Taurine activates the former by opening a Cl channel and the latter by inhibiting the glutamate NMDA receptor. We sought to resolve the site of taurine’s interaction with the NMDA receptor. We recorded evoked field potential in medial prefrontal cortical slices and compared its dose-dependent inhibition by Ro25-6981, a selective antagonist for the GluN1/GluN2B NMDA receptor sub-type, in the absence or presence of taurine. The result revealed that inhibition of evoked responses mediated by taurine overlapped with that by Ro25-6981, suggesting that taurine modulates NMDA receptor by acting on the NMDA GluN1/GluN2B receptor sub-type. Displacement of specific binding of [3H]spermidine and of [3H]taurine to crude frontal cortical membranes by spermine and spermidine showed that polyamines and taurine may interact at a common binding site, possibly localized at the GluN1 or GluN2B subunit. We also tested for long-term taurine actions on glutamate receptor subunits using western blot determination of NMDA and AMPA receptor subunits expression in synaptosomal membranes prepared from rat frontal cortex following chronic taurine treatment. Thirty daily i.p. injections of taurine (100 mg/kg) significantly increased expression of the NMDA GluN2B, but not GluN1, subunit and decreased expression of the AMPA GluR2 subunit. The up-regulation of the GluN2B subunit suggests its long-term interaction with taurine, and supports its being a major target for taurine action. Down-regulation of the AMPA GluR2 subunit is possibly correlated to an increased recruitment of the GluR2-subunit-lacking, calcium-permeable subtype of AMPA receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DL-AP5:

DL-2-amino-5-phosphonovalerate

GABA:

γ-Aminobutyric acid

IC50 :

Half maximal inhibitory concentration

NMDA:

N-methyl-d-aspartic acid

TAG:

6-Aminomethyl-3-methyl-4H-1,2,4-benzothiadiazine 1,1-dioxide

TBST:

Tween 20-containing tris-buffered saline

References

  • Bakshi K, Gennaro S, Chan CY, Kosciuk M, Liu J, Stucky A, Trenkner E, Friedman E, Nagele RG, Wang HY (2009) Prenatal cocaine reduces AMPA receptor synaptic expression through hyperphosphorylation of the synaptic anchoring protein GRIP. J Neurosci 29:6308–6319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bellone C, Luscher C (2006) Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat Neurosci 9:636–641

    Article  CAS  PubMed  Google Scholar 

  • Belluzzi O, Puopolo M, Benedusi M, Kartskin I (2004) Selective neuroinhibitory effects of taurine in slices of rat main olfactory bulb. Neuroscience 124:929–944

    Article  CAS  PubMed  Google Scholar 

  • Besancon E, Guo S, Lok J, Tymianski M, Lo EH (2008) Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci 29(5):268–275

    Article  CAS  PubMed  Google Scholar 

  • Burnashev N, Zhou Z, Neher E, Sakmann B (1995) Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J Physiol 485(2):403–418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chan CY, Sun HS, Shah SM, Agovic MS, Ho I, Friedman E, Banerjee SP (2013) Direct interaction of taurine with the NMDA glutamate receptor subtype via multiple mechanisms. Adv Exp Med Biol 775:45–52

    Article  CAS  PubMed  Google Scholar 

  • Chan CY, Sun HS, Shah SM, Agovic MS, Friedman E, Banerjee SP (2014) Modes of direct modulation by taurine of the glutamate NMDA receptor in rat cortex. Eur J Pharmacol 728:167–175

    Article  CAS  PubMed  Google Scholar 

  • Chen WQ, Jin H, Nguyen M, Carr J, Lee YJ, Hsu CC, Faiman MD, Schloss JV, Wu JY (2001) Role of taurine in the regulation of intracellular calcium level and neuroprotective function in cultured neurons. J Neurosci Res 66:612–619

    Article  CAS  PubMed  Google Scholar 

  • Conrad KL, Tseng KY, Uejima JL, Reimers JM, Heng LJ, Shaham Y, Marinelli M, Wolf ME (2008) Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454:118–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  CAS  PubMed  Google Scholar 

  • Cull-Candy S, Kelly L, Farrant M (2006) Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Curr Opin Neurobiol 16:288–297

    Article  CAS  PubMed  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    CAS  PubMed  Google Scholar 

  • El Idrissi A, Trenkner E (1999) Growth factors and taurine protect excitotoxicity by stabilizing calcium homeostasis and energy metabolism. J Neurosci 19:9459–9468

    PubMed  Google Scholar 

  • El Idrissi A, Trenkner E (2003) Taurine regulates mitochondrial calcium homeostasis. Adv Exp Med Biol 526:527–536

    Article  PubMed  Google Scholar 

  • Fischer G, Mutel V, Trube G, Malherbe P, Kew JN, Mohacsi E, Heitz MP, Kemp JA (1997) Ro 25-6981, a highly potent and selective blocker of N-methyl-d-aspartate receptors containing the NR2B subunit. Characterization in vitro. J Pharmacol Exp Ther 283:1285–1292

    CAS  PubMed  Google Scholar 

  • Frosini M, Sesti C, Dragoni S, Valoti M, Palmi M, Dixon HB, Machetti F, Sgaragli G (2003a) Interactions of taurine and structurally related analogues with the GABAergic system and taurine binding sites of rabbit brain. Br J Pharmacol 138(6):1163–1171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frosini M, Sesti C, Saponara S, Ricci L, Valoti M, Palmi M, Machetti F, Sgaragli G (2003b) A specific taurine recognition site in the rabbit brain is responsible for taurine effects on thermoregulation. Br J Pharmacol 139:487–494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han X, Tomitori H, Mizuno S, Higashi K, Full C, Fukiwake T, Terui Y, Leewanich P, Nishimura K, Toida T, Williams K, Kashiwagi K, Igarashi K (2008) Binding of spermine and ifenprodil to a purified, soluble regulatory domain of the N-methyl-d-aspartate receptor. J Neurochem 107:1566–1577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vöckler J, Dikranian K, Tenkova TI, Stefovska V, Turski L, Olney JW (1999) Blockade of NMDA receptor, apoptotic neurodegeneration in developing brain. Science 283:70–74

    Article  CAS  PubMed  Google Scholar 

  • Karakas E, Simorowski N, Furukawa H (2009) Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J 28(24):3910–3920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karakas E, Simorowski N, Furukawa H (2011) Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature 475(7355):249–253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kontro P, Oja SS (1987) Co-operativity in sodium-independent taurine binding to brain membranes in the mouse. Neuroscience 23(2):567–570

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski DJ, Chen Z, Zhuang L, Fei YJ, Navarre S, Ganapathy V (2008) Molecular characterization and expression pattern of taurine transporter in zebrafishduring embryogenesis. Life Sci 82(19–20):1004–1011

    Article  CAS  PubMed  Google Scholar 

  • Lidsky TI, Schneider JS, Yablonsky-Alter E, Zuck LG, Banerjee SP (1995) Taurine prevents haloperidol-induced changes in striatal neurochemistry and behavior. Brain Res 686:104–106

    Article  CAS  PubMed  Google Scholar 

  • Liu HY, Gao WY, Wen W, Zhang YM (2006) Taurine modulates calcium influx through l-type voltage-gated calcium channels in isolated cochlear outer hair cells in guinea pigs. Neurosci Lett 399:23–26

    Article  CAS  PubMed  Google Scholar 

  • Liu SJ, Zukin RS (2007) Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci 30:126–134

    Article  CAS  PubMed  Google Scholar 

  • Luczak A, Maclean JN (2012) Default activity patterns at the neocortical microcircuit level. Front Integr Neurosci. 6, Article 30

    Google Scholar 

  • Magnusson KR, Clements JR, Wu JY, Beitz AJ (1989) Colocalization of taurine-andcysteine sulfinic acid decarboxylase-like immunoreactivity in the hippocampus of the rat. Synapse 4(1):55–69

    Article  CAS  PubMed  Google Scholar 

  • Mameli M, Balland B, Lujan R, Luscher C (2007) Rapid synthesis and synaptic insertion of GluR2 for mGluR-LTD in the ventral tegmental area. Science 317:530–533

    Article  CAS  PubMed  Google Scholar 

  • Martin GE, Bendesky RJ, Williams M (1981) Further evidence for selective antagonism of taurine by 6-aminomethyl-3-methyl-4H-1,2,4-benzothiadiazine-1,1-dioxide. Brain Res 229:530–535

    Article  CAS  PubMed  Google Scholar 

  • Masuko T, Kashiwagi K, Kuno T, Nguyen ND, Pahk AJ, Fukuchi J, Igarashi K, Williams K (1999) A regulatory domain (R1-R2) in the amino terminus of the N-methyl-d-aspartate receptor: effects of spermine, protons, and ifenprodil, and structural similarity to bacterial leucine/isoleucine/valine binding protein. Mol Pharmacol 55:957–969

    CAS  PubMed  Google Scholar 

  • Mori H, Mishina M (1995) Structure and function of the NMDA receptor channel. Neuropharmacology 34:1219–1237

    Article  CAS  PubMed  Google Scholar 

  • Mutel V, Buchy D, Klingelschmidt A, Messer J, Bleuel Z, Kemp JA, Richards JG (1998) In vitro binding properties in rat brain of [3H]Ro 25-6981, a potent and selective antagonist of NMDA receptors containing NR2B subunits. J Neurochem 70:2147–2155

    Article  CAS  PubMed  Google Scholar 

  • Oja SS, Korpi ER, Saransaari P (1990) Modification of chloride flux across brain membranes by inhibitory amino acids in developing and adult mice. Neurochem Res 15(8):797–804

    Article  CAS  PubMed  Google Scholar 

  • Okamoto K, Kimura H, Sakai Y (1983a) Evidence for taurine as an inhibitory neurotransmitter in cerebellar stellate interneurons: selective antagonism by TAG (6-aminomethyl-3-methyl-4H, 1,2,4-benzothiadiazine-1,1-dioxide). Brain Res 265:163–168

    Article  CAS  PubMed  Google Scholar 

  • Okamoto K, Kimura H, Sakai Y (1983b) Taurine-induced increase of the Cl-conductance of cerebellar Purkinje cell dendrites in vitro. Brain Res 259:319–323

    Article  CAS  PubMed  Google Scholar 

  • Orozco-Cabal L, Pollandt S, Liu J, Vergara L, Shinnick-Gallagher P, Gallagher JP (2006) A novel rat medial prefrontal cortical slice preparation to investigate synaptic transmission from amygdala to layer V prelimbic pyramidal neurons. J Neurosci Methods 151:148–158

    Article  PubMed  Google Scholar 

  • Philibert RA, Rogers KL, Dutton GR (1989) K+-evoked taurine efflux from cerebellar astrocytes: on the roles of Ca2+ and Na+. Neurochem Res 14(1):43–48

    Article  CAS  PubMed  Google Scholar 

  • Popp RL, Lovinger DM (2000) Interaction of acamprosate with ethanol and spermine on NMDA receptors in primary cultured neurons. Eur J Pharmacol 394:221–231

    Article  CAS  PubMed  Google Scholar 

  • Saransaari P, Oja SS (2000) Taurine and neural damage. Amino Acids 19:509–526

    Article  CAS  PubMed  Google Scholar 

  • Silberberg G, Grillner S, LeBeau FE, Maex R, Markram H (2005) Synaptic pathways in neural microcircuits. Trends Neurosci 28(10):541–551

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Wild KD, Shank RP, Lee DH (1999) Galanin inhibits acetylcholine release from rat cerebral cortex via a pertussis toxin-sensitive Gi protein. Neuropeptides 33:197–205

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Yue TL, Feuerstein G, Friedman E (1994) Platelet-activating factor: diminished acetylcholine release from rat brain is mediated by a Gi protein. J Neurochem 63:1720–1725

    Article  CAS  PubMed  Google Scholar 

  • Williams K (1997a) Interactions of polyamines with ion channels. Biochem J 325(2):289–297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams K (1997b) Modulation and block of ion channels: a new biology of polyamines. Cell Signal 9:1–13

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Jin Y, Wei J, Jin H, Sha D, Wu JY (2005) Mode of action of taurine as a neuroprotector. Brain Res 1038:123–131

    Article  CAS  PubMed  Google Scholar 

  • Wu JY, Moss LG, Chen MS (1979) Tissue and regional distribution of cysteic acid decarboxylase. A new assay method. Neurochem Res 4(2):201–212

    Article  CAS  PubMed  Google Scholar 

  • Wu JY (1982) Purification and characterization of cysteic acid and cysteine sulfiniccid decarboxylase and l-glutamate decarboxylase from bovine brain. Proc Natl Acad Sci U S A 79(14):4270–4274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yarbrough GG, Singh DK, Taylor DA (1981) Neuropharmacological characterization of a taurine antagonist. J Pharmacol Exp Ther 219:604–613

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by PSC-CUNY Awards 65634-0043 and 66651-0044 and the Department of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomed Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Y. Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chan, C.Y. et al. (2015). Taurine Targets the GluN2b-Containing NMDA Receptor Subtype. In: Marcinkiewicz, J., Schaffer, S. (eds) Taurine 9. Advances in Experimental Medicine and Biology, vol 803. Springer, Cham. https://doi.org/10.1007/978-3-319-15126-7_43

Download citation

Publish with us

Policies and ethics