Skip to main content

Experimental Microbial Evolution of Extremophiles

  • Chapter
  • First Online:
Biotechnology of Extremophiles:

Part of the book series: Grand Challenges in Biology and Biotechnology ((GCBB,volume 1))

Abstract

Experimental microbial evolution (EME) and its variant, adaptive laboratory evolution (ALE), are emerging empirical strategies for understanding fundamental biological processes in microbes. Integration of high throughput analytical methods combined with genetic selection leverage the power of these methods, particularly ALE, for the production of new biological traits while providing insight into their mechanistic basis. Though traditionally applied to model organisms, in this chapter, these methods are extended to studies using microbial extremophiles with an emphasis on current studies from our laboratory because of the near absence of published literature. Theoretic considerations are presented first. These are followed by descriptions of technologies that are required to extend these evolutionary methods to the study of extremophiles. Finally, the application of ALE is demonstrated using two distinct types of extremophiles. These include the hyperthermophilic anaerobic bacterium Thermotoga maritima, and the extremely thermoacidophilic archaeon Sulfolobus solfataricus. For T. maritima, the evolutionary genomics of deletion formation is presented, and for S. solfataricus, the role of insertion sequence elements is considered during the evolution of increased thermoacidophily. These examples demonstrate the utility of experimental evolutionary methods in association with extremophiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achaz G, Rocha EP, Netter P, Coissac E (2002) Origin and fate of repeats in bacteria. Nucleic Acids Res 30:2987–2994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams J, Puskas-Rozsa S, Simlar J, Wilke CM (1992) Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae. Curr Genet 22:13–19

    Article  CAS  PubMed  Google Scholar 

  • Allers T (2010) Overexpression and purification of halophilic proteins in Haloferax volcanii. Bioeng Bugs 1:288–290

    Article  PubMed  PubMed Central  Google Scholar 

  • Allers T, Mevarech M (2005) Archaeal genetics-the third way. Nat Rev Genet 6:58–73

    Article  CAS  PubMed  Google Scholar 

  • Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, deJonge BL, Carmel G, Tummino PJ, Caruso A, Uria-Nickelsen M, Mills DM, Ives C, Gibson R, Merberg D, Mills SD, Jiang Q, Taylor DE, Vovis GF, Trust TJ (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176–180

    Article  PubMed  CAS  Google Scholar 

  • Anfinsen CB, Edsall JT, Richards FM, Eisenberg DS (1995) Advances in protein chemistry. Academic Press, San Diego

    Google Scholar 

  • Antranikian G, Vorgias CE, Bertoldo C (2005) Extreme environments as a resource for microorganisms and novel biocatalysts. Adv Biochem Eng Biotechnol 96:219–262

    CAS  PubMed  Google Scholar 

  • Araya CL, Payen C, Dunham MJ, Fields S (2010) Whole-genome sequencing of a laboratory-evolved yeast strain. BMC Genomics 11:88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atwood KC, Schneider LK, Ryan FJ (1951) Selective mechanisms in bacteria. Cold Spring Harb Symp Quant Biol 16:345–355

    Article  CAS  PubMed  Google Scholar 

  • Avrahami-Moyal L, Engelberg D, Wenger JW, Sherlock G, Braun S (2012) Turbidostat culture of Saccharomyces cerevisiae W303-1A under selective pressure elicited by ethanol selects for mutations in SSD1 and UTH1. FEMS Yeast Res 12:521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmann H, Starrenburg MJ, Molenaar D, Kleerebezem M, van Hylckama Vlieg JE (2012) Microbial domestication signatures of Lactococcus lactis can be reproduced by experimental evolution. Genome Res 22:115–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243–1247

    Article  CAS  PubMed  Google Scholar 

  • Bennett AF, Hughes BS (2009) Microbial experimental evolution. Am J Physiol Regul Integr Comp Physiol 297:29

    Article  CAS  Google Scholar 

  • Bennett AF, Dao KM, Lenski RE (1990) Rapid evolution in response to high-temperature selection. Nature 346:79–81

    Article  CAS  PubMed  Google Scholar 

  • Bi X, Liu LF (1994) recA-independent and recA-dependent intramolecular plasmid recombination. Differential homology requirement and distance effect. J Mol Biol 235:414–423

    Article  CAS  PubMed  Google Scholar 

  • Bini E, Dikshit V, Dirksen K, Drozda M, Blum P (2002) Stability of mRNA in the hyperthermophilic archaeon Sulfolobus solfataricus. RNA 8:1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom JD, Lu Z, Chen D, Raval A, Venturelli OS, Arnold FH (2007) Evolution favors protein mutational robustness in sufficiently large populations. BMC Biol 5:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bro C, Nielsen J (2004) Impact of ‘ome’ analyses on inverse metabolic engineering. Metab Eng 6:204–211

    Article  CAS  PubMed  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68

    Article  CAS  PubMed  Google Scholar 

  • Brügger K, Torarinsson E, Redder P, Chen L, Garrett RA (2004) Shuffling of Sulfolobus genomes by autonomous and non-autonomous mobile elements. Biochem Soc Trans 32:179–183

    Article  PubMed  Google Scholar 

  • Bryson V, Szybalski W (1952) Microbial selection. Science 116:45–46

    Article  Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073

    Article  CAS  PubMed  Google Scholar 

  • Chédin F, Dervyn R, Ehrlich SD, Noirot P (1994) Frequency of deletion formation decreases exponentially with distance between short direct repeats. Mol Microbiol 12:561–569

    Article  PubMed  Google Scholar 

  • Chhabra SR, Shockley KR, Conners SB, Scott KL, Wolfinger RD, Kelly RM (2003) Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima. J Biol Chem 278:7540–7552

    Article  CAS  PubMed  Google Scholar 

  • Cohan FM (2001) Bacterial species and speciation. Syst Biol 50:513–524

    Article  CAS  PubMed  Google Scholar 

  • Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, Delong EF, Chisholm SW (2006) Genomic islands and the ecology and evolution of Prochlorococcus. Science 311:1768–1770

    Article  CAS  PubMed  Google Scholar 

  • Conners SB, Montero CI, Comfort DA, Shockley KR, Johnson MR, Chhabra SR, Kelly RM (2005) An expression-driven approach to the prediction of carbohydrate transport and utilization regulons in the hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 187:7267–7282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad TM, Lewis NE, Palsson BØ (2011) Microbial laboratory evolution in the era of genome-scale science. Mol Syst Biol 7:42

    Google Scholar 

  • Cooper VS, Lenski RE (2000) The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407:736–739

    Article  CAS  PubMed  Google Scholar 

  • Cooper TF, Rozen DE, Lenski RE (2003) Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli. Proc Natl Acad Sci USA 100:1072–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dénervaud N, Becker J, Delgado-Gonzalo R, Damay P, Rajkumar AS, Unser M, Shore D, Naef F, Maerkl SJ (2013) A chemostat array enables the spatio-temporal analysis of the yeast proteome. Proc Natl Acad Sci USA 110:15842–15847

    Article  PubMed  PubMed Central  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    Article  CAS  PubMed  Google Scholar 

  • Draghi JA, Parsons TL, Wagner GP, Plotkin JB (2010) Mutational robustness can facilitate adaptation. Nature 463:353–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution – principles and applications for biotechnology. Microb Cell Fact 12:1475–2859

    Article  Google Scholar 

  • Dunham MJ, Badrane H, Ferea T, Adams J, Brown PO, Rosenzweig F, Botstein D (2002) Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 99:16144–16149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4:457–469

    Article  CAS  PubMed  Google Scholar 

  • Elena SF, Wilke CO, Ofria C, Lenski RE (2007) Effects of population size and mutation rate on the evolution of mutational robustness. Evolution 61:666–674

    Article  PubMed  Google Scholar 

  • Ferenci T (2007) Bacterial physiology, regulation and mutational adaptation in a chemostat environment. In: Poole RK (ed) Advances in microbial physiology, vol 52. Elsevier Academic Press, San Diego

    Google Scholar 

  • Ferenci T (2008) Bacterial physiology, regulation and mutational adaptation in a chemostat environment. In: Poole RK (ed) Advances in microbial physiology, vol 53. Elsevier Academic Press, San Diego

    Google Scholar 

  • Fraser-Liggett CM (2005) Insights on biology and evolution from microbial genome sequencing. Genome Res 15:1603–1610

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Vallvé S, Palau J, Romeu A (2000) Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res 10:1719–1725

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT, Ravel J, Paulsen IT, Kolonay JF, Brinkac L, Beanan M, Dodson RJ, Daugherty SC, Madupu R, Angiuoli SV, Durkin AS, Haft DH, Vamathevan J, Khouri H, Utterback T, Lee C, Dimitrov G, Jiang L, Qin H, Weidman J, Tran K, Kang K, Hance IR, Nelson KE, Fraser CM (2005) Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187:2426–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gresham D, Dunham MJ (2014) The enduring utility of continuous culturing in experimental evolution. Genomics 104:399–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gresham D, Ruderfer DM, Pratt SC, Schacherer J, Dunham MJ, Botstein D, Kruglyak L (2006) Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray. Science 311:1932–1936

    Article  CAS  PubMed  Google Scholar 

  • Gresham D, Desai MM, Tucker CM, Jenq HT, Pai DA, Ward A, DeSevo CG, Botstein D, Dunham MJ (2008) The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet 4:e1000303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grogan DW (1989) Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171:6710–6719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grogan DW, Carver GT, Drake JW (2001) Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci USA 98:7928–7933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardison RC (2003) Comparative genomics. PLoS Biol 1:e58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Helling RB, Vargas CN, Adams J (1987) Evolution of Escherichia coli during growth in a constant environment. Genetics 116:349–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herring CD, Raghunathan A, Honisch C, Patel T, Applebee MK, Joyce AR, Albert TJ, Blattner FR, van den Boom D, Cantor CR, Palsson BØ (2006) Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nat Genet 38:1406–1412

    Article  CAS  PubMed  Google Scholar 

  • Hindré T, Knibbe C, Beslon G, Schneider D (2012) New insights into bacterial adaptation through in vivo and in silico experimental evolution. Nat Rev Microbiol 10:352–365

    PubMed  Google Scholar 

  • Hong J, Gresham D (2014) Molecular specificity, convergence and constraint shape adaptive evolution in nutrient-poor environments. PLoS Genet 10:e1004041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huber H, Stetter KO (1998) Hyperthermophiles and their possible potential in biotechnology. J Biotechnol 64:39–52

    Article  CAS  Google Scholar 

  • Kadam SV, Wegener-Feldbrügge S, Søgaard-Andersen L, Velicer GJ (2008) Novel transcriptome patterns accompany evolutionary restoration of defective social development in the bacterium Myxococcus xanthus. Mol Biol Evol 25:1274–1281

    Article  CAS  PubMed  Google Scholar 

  • Kao KC, Sherlock G (2008) Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat Genet 40:1499–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidwell MG, Lisch DR (2000) Transposable elements and host genome evolution. Trends Ecol Evol 15:95–99

    Article  PubMed  Google Scholar 

  • Kinnersley M, Wenger J, Kroll E, Adams J, Sherlock G, Rosenzweig F (2014) Clonal reinforcement drives evolution of a simple microbial community. PLoS Genet 10:e1004430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kunin V, Ouzounis CA (2003) The balance of driving forces during genome evolution in prokaryotes. Genome Res 13:1589–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29:4633–4642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kussell E (2013) Evolution in microbes. Annu Rev Biophys 42:493–514

    Article  CAS  PubMed  Google Scholar 

  • Kvitek DJ, Sherlock G (2013) Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment. PLoS Genet 9:e1003972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lang GI, Rice DP, Hickman MJ, Sodergren E, Weinstock GM, Botstein D, Desai MM (2013) Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500:571–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lashkari DA, DeRisi JL, McCusker JH, Namath AF, Gentile C, Hwang SY, Brown PO, Davis RW (1997) Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc Natl Acad Sci USA 94:13057–13062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Fourn C, Fardeau ML, Ollivier B, Lojou E, Dolla A (2008) The hyperthermophilic anaerobe Thermotoga maritima is able to cope with limited amount of oxygen: insights into its defence strategies. Environ Microbiol 10:1877–1887

    Article  PubMed  CAS  Google Scholar 

  • Lenski RE, Mongold JA, Sniegowski PD, Travisano M, Vasi F, Gerrish PJ, Schmidt TM (1998) Evolution of competitive fitness in experimental populations of E. coli: what makes one genotype a better competitor than another? Antonie van Leeuwenhoek 73:35–47

    Article  CAS  PubMed  Google Scholar 

  • Lorantfy B, Seyer B, Herwig C (2014) Stoichiometric and kinetic analysis of extreme halophilic Archaea on various substrates in a corrosion resistant bioreactor. New Biotechnol 31:80–89

    Article  CAS  Google Scholar 

  • Lovett ST, Drapkin PT, Sutera VA Jr, Gluckman-Peskind TJ (1993) A sister-strand exchange mechanism for recA-independent deletion of repeated DNA sequences in Escherichia coli. Genetics 135:631–642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovett ST, Gluckman TJ, Simon PJ, Sutera VA Jr, Drapkin PT (1994) Recombination between repeats in Escherichia coli by a recA-independent, proximity-sensitive mechanism. Mol Gen Genet 245:294–300

    Article  CAS  PubMed  Google Scholar 

  • Maezato Y, Dana K, Blum P (2011) Engineering thermoacidophilic archaea using linear DNA recombination. Methods Mol Biol 765:435–445

    Article  CAS  PubMed  Google Scholar 

  • Maezato Y, Johnson T, McCarthy S, Dana K, Blum P (2012) Metal resistance and lithoautotrophy in the extreme thermoacidophile Metallosphaera sedula. J Bacteriol 194:6856–6863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy S, Ai C, Wheaton G, Tevatia R, Eckrich V, Kelly R, Blum P (2014) Role of an archaeal PitA transporter in the copper and arsenic resistance of Metallosphaera sedula, an extreme thermoacidophile. J Bacteriol 196:3562–3570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCarthy S, Johnson T, Pavlik B, Payne S, Schackwitz W, Martin J, Lipzen A, Keffler E, Blum P (2015) Expanding the limits of thermoacidophily in the archaeon Sulfolobus solfataricus by adaptive evolution. Appl Environ Microbiol. PII: AEM.03225-15 [Epub ahead of print], PMID: 26590281

    Google Scholar 

  • Monod J (1942) Recherche sur la croissance des cultures bactériennes. Hermann and Cie, Paris

    Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    Article  CAS  PubMed  Google Scholar 

  • Novick A, Szilard L (1950) Description of the chemostat. Science 112:715–716

    Article  CAS  PubMed  Google Scholar 

  • Paquin C, Adams J (1983) Frequency of fixation of adaptive mutations is higher in evolving diploid than haploid yeast populations. Nature 302:495–500

    Article  CAS  PubMed  Google Scholar 

  • Philippe N, Crozat E, Lenski RE, Schneider D (2007) Evolution of global regulatory networks during a long-term experiment with Escherichia coli. Bioessays 29:846–860

    Article  PubMed  Google Scholar 

  • Polz MF, Hunt DE, Preheim SP, Weinreich DM (2006) Patterns and mechanisms of genetic and phenotypic differentiation in marine microbes. Philos Trans R Soc Lond B Biol Sci 361:2009–2021

    Article  PubMed  PubMed Central  Google Scholar 

  • Prosser JI, Bohannan BJM, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, Green JL, Green LE, Killham K, Lennon JJ, Osborn AM, Solan M, van der Gast CJ, Young JPW (2007) The role of ecological theory in microbial ecology. Nat Rev Microbiol 5:384–392

    Article  CAS  PubMed  Google Scholar 

  • Redder P, Garrett RA (2006) Mutations and rearrangements in the genome of Sulfolobus solfataricus P2. J Bacteriol 188:4198–4206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Q, Chen K, Paulsen IT (2007) TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res 35:D274–D279

    Article  CAS  PubMed  Google Scholar 

  • Riehle MM, Bennett AF, Long AD (2001) Genetic architecture of thermal adaptation in Escherichia coli. Proc Natl Acad Sci USA 98:525–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032

    Article  CAS  PubMed  Google Scholar 

  • Rolfsmeier M, Blum P (1995) Purification and characterization of a maltase from the extremely thermophilic crenarchaeote Sulfolobus solfataricus. J Bacteriol 177:482–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romero D, Palacios R (1997) Gene amplification and genomic plasticity in prokaryotes. Annu Rev Genet 31:91–111

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig RF, Sharp RR, Treves DS, Adams J (1994) Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. Genetics 137:903–917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rusch A, Walpersdorf E, de Beer D, Gurrieri S, Amend JP (2005) Microbial communities near the oxic/anoxic interface in the hydrothermal system of Vulcano Island, Italy. Chem Geol 224:169–182

    Article  CAS  Google Scholar 

  • Sauer U (2001) Evolutionary engineering of industrially important microbial phenotypes. In: Nielsen J, Eggeling L, Dynesen J, Gárdonyi M, Gill RT, Graaf AA, Hahn-Hägerdal B, Jönsson LJ, Khosla C, Licari R, McDaniel R, McIntyre M, Miiller C, Nielsen J, Cordero Otero RR, Sahm H, Sauer U, Stafford DE, Stephanopoulos G, Wahlbom CE, Yanagimachi KS, Zyl WH (eds) Metabolic engineering. Springer, Berlin/Heidelberg

    Google Scholar 

  • Schneider D, Lenski RE (2004) Dynamics of insertion sequence elements during experimental evolution of bacteria. Res Microbiol 155:319–327

    Article  CAS  PubMed  Google Scholar 

  • Schröder C, Selig M, Schönheit P (1994) Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway. Arch Microbiol 161:460–470

    Google Scholar 

  • Schwikowski B, Uetz P, Fields S (2000) A network of protein-protein interactions in yeast. Nat Biotechnol 18:1257–1261

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Gradnigo J, White D, Lipzen A, Martin J, Schackwitz W, Moriyama E, Blum P (2015) Complete genome sequence of an evolved Thermotoga maritima isolate. Genome Announc 3:e00557–15

    PubMed  PubMed Central  Google Scholar 

  • Singh R, White D, Kelly R, Noll K, Blum P. Uncoupling fermentative synthesis of molecular hydrogen from biomass formation in Thermotoga maritima. (in preparation)

    Google Scholar 

  • Smith JM, Smith NH, O’Rourke M, Spratt BG (1993) How clonal are bacteria? Proc Natl Acad Sci USA 90:4384–4388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sniegowski PD, Gerrish PJ, Lenski RE (1997) Evolution of high mutation rates in experimental populations of E. coli. Nature 387:703–705

    Article  CAS  PubMed  Google Scholar 

  • Suyama M, Bork P (2001) Evolution of prokaryotic gene order: genome rearrangements in closely related species. Trends Genet 17:10–13

    Article  CAS  PubMed  Google Scholar 

  • Tatum EL, Lederberg J (1947) Gene recombination in the bacterium Escherichia coli. J Bacteriol 53:673–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM, Mora M, Scarselli M, Margarit Rosy I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor KJ, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102:13950–13955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toprak E, Veres A, Michel JB, Chait R, Hartl DL, Kishony R (2012) Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat Genet 44:101–105

    Article  CAS  Google Scholar 

  • Treves DS, Manning S, Adams J (1998) Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli. Mol Biol Evol 15:789–797

    Article  CAS  PubMed  Google Scholar 

  • Ussery DW, Binnewies TT, Gouveia-Oliveira R, Jarmer H, Hallin PF (2004) Genome update: DNA repeats in bacterial genomes. Microbiology 150:3519–3521

    Article  CAS  PubMed  Google Scholar 

  • van Ham SM, van Alphen L, Mooi FR, van Putten JP (1993) Phase variation of H. influenzae fimbriae: transcriptional control of two divergent genes through a variable combined promoter region. Cell 73:1187–1196

    Article  PubMed  Google Scholar 

  • Wenger JW, Piotrowski J, Nagarajan S, Chiotti K, Sherlock G, Rosenzweig F (2011) Hunger artists: yeast adapted to carbon limitation show trade-offs under carbon sufficiency. PLoS Genet 7:e1002202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wertz JE, Goldstone C, Gordon DM, Riley MA (2003) A molecular phylogeny of enteric bacteria and implications for a bacterial species concept. J Evol Biol 16:1236–1248

    Article  CAS  PubMed  Google Scholar 

  • Wilbanks EG, Larsen DJ, Neches RY, Yao AI, Wu CY, Kjolby RA, Facciotti MT (2012) A workflow for genome-wide mapping of archaeal transcription factors with ChIP-seq. Nucleic Acids Res 40(10):e74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods RJ, Barrick JE, Cooper TF, Shrestha U, Kauth MR, Lenski RE (2011) Second-order selection for evolvability in a large Escherichia coli population. Science 331:1433–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worthington P, Blum P, Perez-Pomares F, Elthon T (2003) Large-scale cultivation of acidophilic hyperthermophiles for recovery of secreted proteins. Appl Environ Microbiol 69:252–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons BA, Sorek R (2010) A single-base resolution map of an archaeal transcriptome. Genome Res 20:133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhaxybayeva O, Swithers KS, Lapierre P, Fournier GP, Bickhart DM, DeBoy RT, Nelson KE, Nesbø CL, Doolittle WF, Gogarten JP, Noll KM (2009) On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc Natl Acad Sci USA 106:5865–5870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This article was supported by funds from the University of Nebraska Cell Development Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Blum .

Editor information

Editors and Affiliations

Ethics declarations

Paul Blum, Deepak Rudrappa, Raghuveer Singh, Samuel McCarthy and Benjamin Pavlik declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blum, P., Rudrappa, D., Singh, R., McCarthy, S., Pavlik, B. (2016). Experimental Microbial Evolution of Extremophiles. In: Rampelotto, P. (eds) Biotechnology of Extremophiles:. Grand Challenges in Biology and Biotechnology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-13521-2_22

Download citation

Publish with us

Policies and ethics