Skip to main content

Solutions for Models of Chemically Reacting Compressible Mixtures

  • Reference work entry
  • First Online:
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids
  • 4045 Accesses

Abstract

The mathematical modeling of chemically reacting mixtures is investigated. The governing equations, which may be split between conservation equations, thermochemistry, and transport fluxes, are presented as well as typical simplifications often encountered in the literature. The hyperbolic–parabolic structure of the resulting system of partial differential equations is analyzed using symmetrizing variables. The Cauchy problem is discussed for the full system derived from the kinetic theory of gases as well as relaxation toward chemical equilibrium fluids in the fast chemistry limit. The situations of traveling waves and reaction–diffusion systems are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Alazard, Low mach number limit of the full Navier-Stokes equations. Arch. Ration. Mech. Anal. 180, 1–73 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Amann, Dynamic theory of quasilinear parabolic equations. III. Global existence. Math. Z. 202, 219–250 (1989)

    MATH  Google Scholar 

  3. H. Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems. Diff. Int. Equ. 3, 13–75 (1990)

    MATH  Google Scholar 

  4. J.D. Anderson Jr., Hypersonics and High Temperature Gas Dynamics (McGraw-Hill Book Company, New York, 1989)

    Google Scholar 

  5. K. Beauchard, E. Zuazua, Large time asymptotics for partially dissipative hyperbolic systems. Arch. Rat. Mech. Anal. 199, 177–227 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. R.J. Bearman, J.G. Kirkwood, The statistical mechanics of transport processes. XI. Equations of transport in multicomponent systems. J. Chem. Phys. 28, 136–145 (1958)

    Google Scholar 

  7. R. Bendahklia, V. Giovangigli, D. Rosner, Soret effects in laminar counterflow spray diffusion flames. Comb. Theory Mod. 6, 1–17, (2002)

    Article  MATH  Google Scholar 

  8. S. Benzoni, D. Serre, Multi-Dimensional Hyperbolic Partial Differential Equations. First Order Systems and Applications (Oxford Mathematical Monographs, Oxford, 2007)

    MATH  Google Scholar 

  9. H. Berestycki, B. Nikolaenko, B. Scheurer, Traveling wave solutions to combustion models and their singular limits. SIAM J. Math. Anal. 16, 1207–1242 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Berestycki, B. Larrouturou, P.-L. Lions, Multidimensional travelling wave solutions of a flame propagation model. Arch. Rat. Mech. Anal. 111, 33–49 (1990)

    Article  MATH  Google Scholar 

  11. H. Berestycki, B. Larrouturou, J.M. Roquejoffre, Stability of travelling fronts in a model for flame propagation part I: linear analysis. Arch. Rat. Mech. Anal. 117, 97–117 (1992)

    Article  MATH  Google Scholar 

  12. D. Bothe, On the Maxwell-Stefan approach to multicomponent diffusion. In: Progress in Nonlinear Differential Equations and Their Applications (Springer, Basel, 2011), pp. 81–93

    Google Scholar 

  13. D. Bresch, B. Desjardins, On the construction of approximate solutions for the 2D viscous shallow water model for compressible Navier-Stokes Models. J. Math. Pure Appl. 86, 362–368 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Bresch, B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pure Appl. 87, 57–90 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Bruno, E. Esposito, V. Giovangigli, Relaxation of quantum population and volume viscosities in He/H2 mixtures. AIP Conf. Proc. 1628, 1237–1244 (2014)

    Article  Google Scholar 

  16. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1970)

    MATH  Google Scholar 

  17. G.Q. Chen, D. Hoff, K. Trivisa, Global solutions to a model for exothermically reacting, compressible flows with large discontinuous initial data. Arch. Rat. Mech. Anal. 166, 321–358 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. G.Q. Chen, C.D. Levermore, T.P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math. 47, 787–830 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. X. Chen, A. Jüngel, Analysis of an incompressible Navier-Stokes-Maxwell-Stefan system. Commun. Math. Phys. 340, 471–497 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics (Springer, Heidelberg, 2000)

    Book  MATH  Google Scholar 

  21. R. Danchin, Global existence in critical spaces for flows of compressible Navier-Stokes equations. Invent. Math. 141, 579–614 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Danchin, Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Ration. Mech. Anal. 160, 1–39 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Ducomet, E. Feireisl, Š. Nečasová, On a model in radiation hydrodynamics. Ann. Inst. Henri Poincaré. 28, 797–812 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Ern, V. Giovangigli, Multicomponent Transport Algorithms. Lecture Notes in Physics Monographs, vol. M 24 (Springer, Berlin, 1994)

    Google Scholar 

  25. A. Ern, V. Giovangigli, Thermal diffusion effects in hydrogen/air and methane/air flames. Comb. Theor. Mod. 2, 349–372 (1998)

    Article  MATH  Google Scholar 

  26. A. Ern, V. Giovangigli, The kinetic equilibrium regime. Physica-A 260, 49–72 (1998)

    Article  Google Scholar 

  27. A. Ern, V. Giovangigli, M. Smooke, Numerical study of a three-dimensional chemical vapor deposition reactor with detailed chemistry. J. Comput. Phys. 126, 21–39 (1996)

    Article  MATH  Google Scholar 

  28. L.C. Evans, A survey of entropy methods for partial differential equations. Bull. AMS 41, 409–438 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Feinberg, The existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Rat. Mech. Anal. 132, 311–370 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Feireisl, Dynamics of Viscous Compressible Fluids (Oxford University press, Oxford, 2004)

    MATH  Google Scholar 

  31. E. Feireisl, A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids (Birkhäuser, Basel, 2009)

    Book  MATH  Google Scholar 

  32. E. Feireisl, H. Petzeltová, K. Trivisa, Multicomponent reactive flows: global-in-time existence for large data. Commun. Pure Appl. Anal. 7, 1017–1047 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. J.H. Ferziger, H.G. Kaper, Mathematical Theory of Transport Processes in Gases (North Holland Pub. Co., Amsterdam, 1972)

    Google Scholar 

  34. P.C. Fife, Mathematical Aspects of Reacting and Diffusing Systems (Springer, Berlin, 1979)

    Book  MATH  Google Scholar 

  35. K.O. Friedrichs, P.D. Lax, Systems of conservation laws with a convex extension. Proc. Nat. Acad. Sci. USA 68, 1686–1688 (1971)

    Article  MATH  Google Scholar 

  36. V. Giovangigli, Mass conservation and singular multicomponent diffusion algorithms. IMPACT Comput. Sci. Eng. 2, 73–97 (1990)

    Article  Google Scholar 

  37. V. Giovangigli, Convergent iterative methods for multicomponent diffusion. IMPACT Comput. Sci. Eng. 3, 244–276 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  38. V. Giovangigli, Plane flames with multicomponent transport and complex chemistry. Math. Mod. Methods Appl. Sci. 9, 337–378 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. V. Giovangigli, Multicomponent Flow Modeling (Birkhäuser, Boston, 1999)

    Book  MATH  Google Scholar 

  40. V. Giovangigli, Higher order entropies. Arch. Rat. Mech. Anal. 187, 221–285 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. V. Giovangigli, Higher order entropies for compressible fluid models. Math. Mod. Methods Appl. Sci. 19, 67–125 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. V. Giovangigli, S. Candel, Extinction limits of catalyzed stagnation point flow flames. Comb. Sci. Tech. 48, 1–30 (1986)

    Article  Google Scholar 

  43. V. Giovangigli, B. Graille, Asymptotic stability of equilibrium states for ambipolar plasmas. Math. Mod. Methods Appl. Sci. 14, 1361–1399 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. V. Giovangigli, B. Graille, Kinetic theory of partially ionized reactive gas mixtures II. J. Phys. A 42, 025503 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. V. Giovangigli, M. Massot, Asymptotic stability of equilibrium states for multicomponent reactive flows. Math. Mod. Methods Appl. Sci. 8, 251–297 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. V. Giovangigli, M. Massot, The local Cauchy problem for multicomponent reactive flows in full vibrational nonequilibrium. Math. Methods Appl. Sci. 21, 1415–1439 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. V. Giovangigli, M. Massot, Entropic structure of multicomponent reactive flows with partial equilibrium reduced chemistry. Math. Methods Appl. Sci. 27, 739–768 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. V. Giovangigli, L. Matuszewski, Supercritical fluid thermodynamics from equations of state. Physica D 241, 649–670 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. V. Giovangigli, L. Matuszewski, Mathematical modeling of supercritical multicomponent reactive fluids. Math. Mod. Methods App. Sci. 23, 2193–2251 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. V. Giovangigli, L. Matuszewski, Structure of entropies in dissipative multicomponent fluids. Kin. Rel. Mod. 6, 373–406 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. V. Giovangigli, M. Pokorný, E. Zatorska, On steady flow of reactive gaseous mixture. Analysis 35, 319–341 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. V. Giovangigli, B. Tran, Mathematical analysis of a Saint-Venant model with variable temperature. Math. Mod. Methods Appl. Sci. 20, 1–47 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. V. Giovangigli, W.A. Yong, Volume viscosity and fast internal energy relaxation: symmetrization and Chapman-Enskog expansion. Kin. Rel. Models 8, 79–116 (2015)

    Article  MATH  Google Scholar 

  54. V. Giovangigli, W.A. Yong, Volume viscosity and fast internal energy relaxation: error estimates (submitted for publication)

    Google Scholar 

  55. V. Giovangigli, W.A. Yong, Global existence and relaxation for fast chemistry fluids (submitted for publication)

    Google Scholar 

  56. S. Godunov, An interesting class of quasilinear systems. Sov. Math. Dokl. 2, 947–949 (1961)

    MATH  Google Scholar 

  57. A.N. Gorban, G.S. Yablonsky, Extended detailed balance for systems with irreversible reactions. Chem. Eng. Sci. 66, 5388–5399 (2011)

    Article  Google Scholar 

  58. A.N. Gorban, E.M. Mirkes, G.S. Yablonsky, Thermodynamics in the limit of irreversible reactions. Physica A 392, 1318–1335 (2013)

    Article  MathSciNet  Google Scholar 

  59. S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (Dover Publications Inc., New York, 1984)

    MATH  Google Scholar 

  60. E.A. Guggenheim, Thermodynamics (North Holland, Amsterdam, 1962)

    MATH  Google Scholar 

  61. F. Hamel, R. Monneau, J.M. Roquejoffre, Stability of travelling waves in a model for conical flames in two space dimensions. Ann. Scient. Éc. Norm. Sup. 37, 469–506 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  62. S. Heinze, Travelling waves in combustion processes with complex Chemical networks. Trans. Am. Soc. 304, 405–416 (1987)

    MathSciNet  MATH  Google Scholar 

  63. M. Herberg, M. Meyries, J. PrĂĽss, M. Wilke, Reaction-diffusion systems of Maxwell-Stefan type with reversible mass-action kinetics. Nonlinear Anal. (2016, in press)

    Google Scholar 

  64. D. Hoff, Asymptotic behavior of solutions to a model for the flow of a reacting fluid. Archiv. Rat. Mech. Anal. 196, 951–979 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  65. S.L. Hollis, R.H. Martin, M. Pierre, Global existence and boundedness in reaction-diffusion systems. SIAM J. Math. Anal. 18, 744–761 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  66. T.J.R. Hughes, L.P. Franca, M. Mallet, A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics. Comput. Methods Appl. Mech. Eng. 54, 223–234 (1986)

    MATH  Google Scholar 

  67. J.H. Irving, J.G. Kirkwood, The statistical mechanics of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817–829 (1950)

    Google Scholar 

  68. C. Johnson, A. Szepessy, P. Hansbo, On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws. Math. Comput. 54, 107–129 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  69. A. Jüngel, I.V. Stelzer, Existence analysis of Maxwell-Stefan systems for multicomponent mixtures. SIAM J. Math. Anal. 45, 2421–2440 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  70. S. Kawashima, Systems of hyperbolic-parabolic composite type, with application to the equations of magnetohydrodynamics. Doctoral Thesis, Kyoto University, 1984

    Google Scholar 

  71. S. Kawashima, Large-time behavior of solutions to hyperbolic-parabolic systems of conservations laws and applications. Proc. R. Soc. Edinb. 106A, 169–1944 (1987)

    Article  MATH  Google Scholar 

  72. S. Kawashima, S. Nishibata, P. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half-space. Commun. Math. Phys. 240, 483–500 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  73. S. Kawashima, Y. Shizuta, On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws. Tôhoku Math. J. 40, 449–464 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  74. S. Kawashima, W.-A. Yong, Dissipative structure and entropy for hyperbolic systems of conservation laws. Arch. Ration. Mech. Anal. 174, 345–364 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  75. S. Kawashima, W.-A. Yong, Decay estimates for hyperbolic balance laws. J. Anal. Appl. 28, 1–33 (2009)

    MathSciNet  MATH  Google Scholar 

  76. R.J. Kee, M.E. Coltrin, P. Glarborg, Chemically Reacting Flow (Wiley Interscience, Hoboken, 2003)

    Book  Google Scholar 

  77. J. Keizer, Statistical Thermodynamics of Nonequilibrium Processes (Springer, New York, 1987)

    Book  Google Scholar 

  78. F.J. Krambeck, The mathematical structure of chemical kinetics. Arch. Ration. Mech. Anal. 38, 317–347 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  79. Y.S. Kwon, K. Trivisa, Stability and large-time behavior for multicomponent reactive flows. Nonlinearity 22, 2443–2471 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  80. B. Laboudigue, V. Giovangigli, S. Candel, Numerical solution of a free-boundary problem in hypersonic flow theory: nonequilibrium viscous shock layers. J. Comput. Phys. 102, 297–309 (1992)

    Article  MATH  Google Scholar 

  81. O.A. Ladyženskaja, V.A. Solonikov, N.N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, vol. 23 (American Mathematical Society, Providence, 1968)

    Google Scholar 

  82. F. Laurent, M. Massot, Multi-fluid modeling of laminar poly-dispersed spray flames: origin, assumptions and comparison of the sectional and sampling methods. Comb. Theor. Mod. 5, 537–572 (2001)

    Article  Google Scholar 

  83. P.L. Lions, Mathematical Topics in Fluid Mechanics, vol. 1/2 (Oxford University press, Oxford, 1996/1998)

    Google Scholar 

  84. T.-P. Liu, Hyperbolic conservation laws with relaxation. Commun. Math. Phys. 108, 153–175 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  85. G. Ludwig, M. Heil, Boundary layer theory with dissociation and ionization. In: Advances in Applied Mechanics VI (Academic Press, New York, 1960), pp. 39–118

    Google Scholar 

  86. M.R. Marcelin, Sur la mécanique des phénomènes irréversibles. C. R. Acad. Sci. Paris 151, 1052–1055 (1910)

    MATH  Google Scholar 

  87. M. Marion, R. Temam, Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flows. J. Math. Pures App. 105, 102–138 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  88. A. Matsumura, T. Nishida, The initial value problem for the equations of motion of a viscous and heat-conductive fluids. J. Math. Kyoto Univ. 200, 67–104 (1980)

    Article  MATH  Google Scholar 

  89. A. Matsumura, T. Nishida, The initial boundary value problem for the equations of motion of a viscous and heat-conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  90. J. Meixner, Zur Thermodynamik der irreversiblen Prozesse in Gasen mit chemisch reagierenden, dissoziierenden und anregbaren Komponenten. Ann. Phys. 43, 244–270 (1943)

    Article  MathSciNet  Google Scholar 

  91. P.B. Mucha, M. Pokorný, E. Zatorska, Heat-conducting, compressible mixtures with multicomponent diffusion: construction of a weak solution. SIAM J. Math. Anal. 47, 3747–3797 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  92. J. Nash, Le problème de Cauchy pour les equations d’un fluide général. Bull. Soc. Math. Fr. 90, 487–497 (1962)

    Article  MATH  Google Scholar 

  93. R. Natalini, Convergence to equilibrium for the relaxation approximation of conservation laws. Commun. Pure Appl. Math. 49, 795–823 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  94. A. Novotný, I. Straškraba, Introduction to the Mathematical Theory of Compressible Flows (Oxford University press, Oxford, 2004)

    MATH  Google Scholar 

  95. E. Oran, J.P. Boris, Numerical Simulation of Reactive Flows (Elsevier, New York, 1987)

    MATH  Google Scholar 

  96. M. Pierre, Global existence in reaction-diffusion systems with control of mass: a survey. Milan J. Math. 78, 417–455 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  97. M. Pierre, D. Schmitt, Blow up in reaction-diffusion systems with dissipation of mass. SIAM J. Math. Anal. 28, 259–269 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  98. T. Poinsot, D. Veynante, Theoretical and Numerical Combustion (Edwards, Philadelphia, 2005)

    Google Scholar 

  99. I. Prigogine, Etude thermodynamique des phénomènes irréversibles (Dunod, Paris, 1947)

    Google Scholar 

  100. K.F. Roenigk, K.F. Jensen, Low pressure CVD of silicon nitride. J. Electrochem. Soc. 134, 1777–1785 (1987)

    Article  Google Scholar 

  101. J.M. Roquejoffre, Étude mathématique d’un modèle de flamme plane. C. R. Acad. Sci. Paris Série I 311, 593–596 (1990)

    MathSciNet  MATH  Google Scholar 

  102. D.E. Rosner, Transport Processes in Chemically Reacting Flow Systems (Butterworths, Boston, 1986)

    Google Scholar 

  103. T. Ruggeri, Thermodynamics and symmetric hyperbolic systems. Rend. Sem. Mat. Univ. Torino. 46, 167–183 (1988)

    MathSciNet  MATH  Google Scholar 

  104. J.H. Seinfeld, S.N. Pandis, Atmospheric Chemistry and Physics (Wiley, New York, 1998)

    Google Scholar 

  105. D. Serre, Systèmes de Lois de Conservation I and II (Diderot Editeur, Art et Science, Paris, 1996)

    Google Scholar 

  106. D. Serre, The structure of dissipative viscous system of conservation laws. Physica D 239, 1381–1386 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  107. N.Z. Shapiro, L.S. Shapley, Mass action law and the Gibbs free energy function. SIAM J. Appl. Math. 13, 353–375 (1965)

    Article  MathSciNet  Google Scholar 

  108. Y. Shizuta, S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14, 249–275 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  109. J. Smoller, Shock Waves and Reaction Diffusion Equations (Springer, New York, 1994)

    Book  MATH  Google Scholar 

  110. H. Van Beijeren, M.H. Ernst, The modified Enskog equations for mixtures. Physica A 70, 225–242 (1973)

    Google Scholar 

  111. A. Veigant, A. Kazhikov, On the existence of global solution to a two-dimensional Navier-Stokes equations for a compressible viscous flow. Sib. Math. J. 36, 1108–1141 (1995)

    Article  Google Scholar 

  112. A.I. Vol’Pert, S.I. Hudjaev, On the Cauchy problem for composite systems of Nonlinear differential equations. Math. USSR Sbornik. 16, 517–544 (1972)

    Article  Google Scholar 

  113. V.A. Volpert, Elliptic Partial Differential Equations, Volume 2: Reaction-Diffusion Equations. Monographs in Mathematics, vol. 104 (Birkhäuser, Basel, 2014)

    Chapter  Google Scholar 

  114. A.I. Vol’Pert, S.I. Hudjaev, Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics. Mechanics: Analysis, vol. 8 (Martinus Nijhoff Publishers, Dordrecht, 1985)

    Google Scholar 

  115. A.I. Volpert, V.A. Volpert, V.A. Volpert, Travelling Wave Solutions of Parabolic Systems. Translations of Mathematical Monographs, vol. 140 (AMS, Providence, 1994)

    Google Scholar 

  116. L. Waldmann, Transporterscheinungen in gasen von mittlerem druck. Handbuch der Physik 12, 295–514 (1958)

    MathSciNet  Google Scholar 

  117. F.A. Williams, Elementary derivation of the multicomponent diffusion equation. Am. J. Phys. 26, 467–469 (1958)

    Article  Google Scholar 

  118. F.A. Williams, Combustion Theory (The Benjamin/Cummings Pub. Co. Inc., Menlo park, 1985)

    Google Scholar 

  119. W.-A. Yong, Singular perturbations of first-order hyperbolic systems with stiff source terms. J. Differ. Equ. 155, 89–132 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  120. W.-A. Yong, Entropy and global existence for hyperbolic balance laws. Arch. Ration. Mech. Anal. 172, 247–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  121. W.-A. Yong, An interesting class of partial differential equations. J. Math. Phys. 49, 033503 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  122. E. Zatorska, On the steady flow of a multicomponent, compressible, chemically reacting gas. Nonlinearity 24, 3267–3278 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  123. E. Zatorska, On the flow of chemically reacting gaseous mixture. J. Differ. Equ. 253, 3471–3500 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  124. E. Zatorska, Mixtures: sequential stability of variational entropy solutions. J. Math. Fluid Dyn. 17, 437–461 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  125. A. Zltonik, Weak solutions of the equations of motion of a viscous compressible reacting binary mixture: uniqueness and Lipschitz-continuous dependence on data. Mat. Zametki 75, 307–311 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Giovangigli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Giovangigli, V. (2018). Solutions for Models of Chemically Reacting Compressible Mixtures. In: Giga, Y., NovotnĂ˝, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-13344-7_73

Download citation

Publish with us

Policies and ethics