Skip to main content

Clustering and the Hyperbolic Geometry of Complex Networks

  • Conference paper
  • First Online:
Algorithms and Models for the Web Graph (WAW 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8882))

Included in the following conference series:

Abstract

Clustering is a fundamental property of complex networks and it is the mathematical expression of a ubiquitous phenomenon that arises in various types of self-organized networks such as biological networks, computer networks or social networks. In this paper, we consider what is called the global clustering coefficient of random graphs on the hyperbolic plane. This model of random graphs was proposed recently by Krioukov et al. [22] as a mathematical model of complex networks, implementing the assumption that hyperbolic geometry underlies the structure of these networks. We do a rigorous analysis of clustering and characterize the global clustering coefficient in terms of the parameters of the model. We show how the global clustering coefficient can be tuned by these parameters, giving an explicit formula.

Nikolaos Fountoulakis: This research has been supported by a Marie Curie Career Integration Grant PCIG09-GA2011-293619.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47–97 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Balogh, J., Bollobás, B., Krivelevich, M., Müller, T., Walters, M.: Hamilton cycles in random geometric graphs. Ann. Appl. Probab. 21(3), 1053–1072 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  4. Barrat, A., Weigt, M.: On the properties of small-world network models. European Physical Journal B 13(3), 547–560 (2000)

    Article  Google Scholar 

  5. Bloznelis, M.: Degree and clustering coefficient in sparse random intersection graphs. Ann. Appl. Probab. 23(3), 1254–1289 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bode, M., Fountoulakis, N., Müller, T.: On the component structure of random hyperbolic graphs. in preparation

    Google Scholar 

  7. Bollobás, B.: Random graphs. Cambridge University Press, xviii+498 pages (2001)

    Google Scholar 

  8. Bollobás, B., Riordan, O.: Mathematical results on scale-free random graphs. In: Bornholdt, S., Schuster, H.G. (eds). Handbook of Graphs and Networks: From the Genome to the Internet, pp. 1-34. Wiley-VCH, Berlin (2003)

    Google Scholar 

  9. Bollobás, B., Janson, S., Riordan, O.: Sparse random graphs with clustering. Random Structures Algorithms 38, 269–323 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Börner, K., Maru, J.T., Goldstone, R.L.: Colloquium Paper: Mapping Knowledge Domains: The simultaneous evolution of author and paper networks. Proc. Natl. Acad. Sci. USA 101, 5266–5273 (2004)

    Article  Google Scholar 

  11. Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Proc. Natl. Acad. Sci. USA 99, 15879–15882 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chung, F., Lu, L.: Connected components in random graphs with given expected degree sequences. Annals of Combinatorics 6, 125–145 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chung, F., Lu, L.: Complex Graphs and Networks. AMS, viii+264 pages (2006)

    Google Scholar 

  14. Coupechoux, E., Lelarge, M.: How clustering affects epidemics in random networks. In: Proceedings of the 5th International Conference on Network Games, Control and Optimization (NetGCooP 2011), Paris, France, pp. 1–7 (2011)

    Google Scholar 

  15. Dorogovtsev, S.N.: Lectures on Complex Networks. Oxford University Press, xi+134 pages (2010)

    Google Scholar 

  16. Eggemann, N., Noble, S.D.: The clustering coefficient of a scale-free random graph. Discrete Applied Mathematics 159(10), 953–965 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fountoulakis, N.: On the evolution of random graphs on spaces of negative curvature. http://arxiv.org/abs/1205.2923 (preprint)

  18. Gilbert, E.N.: Random plane networks. J. Soc. Indust. Appl. Math. 9, 533–543 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gugelmann, L., Panagiotou, K., Peter, U.: Random Hyperbolic Graphs: Degree Sequence and Clustering. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 573–585. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Hafner, R.: The asymptotic distribution of random clumps. Computing 10, 335–351 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  21. Janson, S., Łuczak, T., Ruciński, A.: Random graphs. Wiley-Interscience, xii+333 pages (2001)

    Google Scholar 

  22. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic Geometry of Complex Networks. Phys. Rev. E 82, 036106 (2010)

    Article  MathSciNet  Google Scholar 

  23. Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14(1), 95–116 (1949)

    Article  MathSciNet  Google Scholar 

  24. McDiarmid, C., Müller, T.: On the chromatic number of random geometric graphs. Combinatorica 31(4), 423–488 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Menczer, F.: Growing and navigating the small world Web by local content. Proc.Natl. Acad. Sci. USA 99, 14014–14019 (2002)

    Article  Google Scholar 

  26. Müller, T.: Personal communication

    Google Scholar 

  27. Newman, M.E., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)

    Article  Google Scholar 

  28. Park, J., Newman, M.E.J.: Statistical mechanics of networks. Phys. Rev. E 70, 066117 (2004)

    Article  MathSciNet  Google Scholar 

  29. Penrose, M.: Random Geometric Graphs. Oxford University Press, xiv+330 pages (2003)

    Google Scholar 

  30. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Fountoulakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Candellero, E., Fountoulakis, N. (2014). Clustering and the Hyperbolic Geometry of Complex Networks. In: Bonato, A., Graham, F., Prałat, P. (eds) Algorithms and Models for the Web Graph. WAW 2014. Lecture Notes in Computer Science(), vol 8882. Springer, Cham. https://doi.org/10.1007/978-3-319-13123-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13123-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13122-1

  • Online ISBN: 978-3-319-13123-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics