Skip to main content

Pharmacokinetics/Pharmacodynamics and Disposition of Antibody-Drug Conjugates

  • Chapter
  • First Online:
Antibody-Drug Conjugates

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 17))

Abstract

Antibody-drug conjugates (ADCs) combine the high target specificity and favorable pharmacokinetics of monoclonal antibodies with the potent tumor-killing properties of cytotoxic agents, and have demonstrated convincing antitumor effect in both animal models and patients. However, the inherent complexity of ADCs with their multiple components often makes their development challenging. Pharmacokinetic and absorption, distribution, metabolism, and excretion (ADME) characterization of ADCs reflects the dynamic interactions between the biological system and ADC, and provides critical assessments in lead selection, optimization, and clinical development. A rational strategy integrating the mechanistic understanding of pharmacokinetic/pharmacodynamics and ADC disposition helps to inform target selection, drug selection, and linker design, and ultimately to maximize the therapeutic window. In this chapter, we give an overview of ADC PKPD and disposition, and discuss our current understanding of the major determinants, unique challenges, and lessons learned from current ADC landscape. The utility of pharmacokinetics–pharmacodynamics (PKPD) modeling is also discussed in the context of providing guidance to assist in the successful development of these complex molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ballantyne A, Dhillon S (2013) Trastuzumabemtansine: first global approval. Drugs 73:755–765

    Article  CAS  PubMed  Google Scholar 

  • Alley SC, Zhang X, Okeley NM, Anderson M, Law CL, Senter PD, Benjamin DR (2009) The pharmacologic basis for antibody-auristatin conjugate activity. J Pharmacol Exp Ther 330:932–938

    Article  CAS  PubMed  Google Scholar 

  • Bander NH (2013) Antibody-drug conjugate target selection: critical factors. Methods Mol Biol 1045:29–40

    Article  PubMed  Google Scholar 

  • Bender B, Leipold D, Liu L, Xu K, Shen BQ, Friberg LE, Tibbitts J (2012) A multicompartmental population PK model elucidating the complex disposition of trastuzumabemtansine (T-DM1): an antibody-drug conjugate for the treatment of HER2-positive cancer, Population Approach Group in Europe, 2012

    Google Scholar 

  • Boswell CA, Ferl GZ, Mundo EE, Bumbaca D, Schweiger MG, Theil FP, Fielder PJ, Khawli LA (2011) Effects of anti-VEGF on predicted antibody biodistribution: roles of vascular volume, interstitial volume, and blood flow. PLoS ONE 6:e17874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boswell CA, Mundo EE, Firestein R, Zhang C, Mao W, Gill H, Young C, Ljumanovic N, Stainton S, Ulufatu S, Fourie A, Kozak KR, Fuji R, Polakis P, Khawli LA, Lin K (2013) An integrated approach to identify normal tissue expression of targets for antibody-drug conjugates: case study of TENB2. Br J Pharmacol 168:445–457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boswell CA, Mundo EE, Zhang C, Bumbaca D, Valle NR, Kozak KR, Fourie A, Chuh J, Koppada N, Saad O, Gill H, Shen BQ, Rubinfeld B, Tibbitts J, Kaur S, Theil FP, Fielder PJ, Khawli LA, Lin K (2011) Impact of drug conjugation on pharmacokinetics and tissue distribution of anti-STEAP1 antibody-drug conjugates in rats. Bioconjugate Chem 22:1994–2004

    Article  CAS  Google Scholar 

  • Burris HA 3rd, Tibbitts J, Holden SN, Sliwkowski MX, Lewis Phillips GD (2011) Trastuzumabemtansine (T-DM1): a novel agent for targeting HER2 + breast cancer. Clin Breast Cancer 11:275–282

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Yamamoto K, Yang LX, Weber R (2013) Brentuximabvedotin: first-line agent for advanced Hodgkin lymphoma. Anticancer Res 33:3879–3885

    CAS  PubMed  Google Scholar 

  • Chuand YW, Polson A (2013) Antibody-drug conjugates for the treatment of B-cell non-Hodgkin’s lymphoma and leukemia. Future Oncol 9:355–368

    Article  Google Scholar 

  • Davis JA, Rock DA, Wienkers LC, Pearson JT (2012) In vitro characterization of the drug-drug interaction potential of catabolites of antibody-maytansinoid conjugates. Drug Metab Dispos 40:1927–1934

    Article  CAS  PubMed  Google Scholar 

  • Deng R, Jin F, Prabhu S, Iyer S (2012) Monoclonal antibodies: what are the pharmacokinetic and pharmacodynamic considerations for drug development? Expert Opin Drug Metab Toxicol 8:141–160

    Article  CAS  PubMed  Google Scholar 

  • Dere R, Yi JH, Lei C, Saad OM, Huang C, Li Y, Baudys J, Kaur S (2013) PK assays for antibody-drug conjugates: case study with ado-trastuzumabemtansine. Bioanalysis 5:1025–1040

    Article  CAS  PubMed  Google Scholar 

  • Erickson HK, Lambert JM (2012) ADME of antibody-maytansinoid conjugates. AAPS J 14:799–805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Erickson HK, Park PU, Widdison WC, Kovtun YV, Garrett LM, Hoffman K, Lutz RJ, Goldmacher VS, Blattler WA (2006) Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res 66:4426–4433

    Article  CAS  PubMed  Google Scholar 

  • Flemming A (2014) Antibody engineering: fine-tuning antibody-drug conjugates. Nat Rev Drug Discov 13:178

    Article  CAS  PubMed  Google Scholar 

  • Gerber DE (2008) Targeted therapies: a new generation of cancer treatments. Am Fam Physician 77:311–319

    PubMed  Google Scholar 

  • Hamblett KJ, Senter PD, Chace DF, Sun MM, Lenox J, Cerveny CG, Kissler KM, Bernhardt SX, Kopcha AK, Zabinski RF, Meyer DL, Francisco JA (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10:7063–7070

    Article  CAS  PubMed  Google Scholar 

  • Herbertson RA, Tebbutt NC, Lee FT, MacFarlane DJ, Chappell B, Micallef N, Lee ST, Saunder T, Hopkins W, Smyth FE, Wyld DK, Bellen J, Sonnichsen DS, Brechbiel MW, Murone C, Scott AM (2009) Phase I biodistribution and pharmacokinetic study of Lewis Y-targeting immunoconjugate CMD –193 in patients with advanced epithelial cancers. Clin Cancer Res 15:6709–6715

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey SC, Burke PJ, Lyon RP, Meyer DW, Sussman D, Anderson M, Hunter JH, Leiske CI, Miyamoto JB, Nicholas ND, Okeley NM, Sanderson RJ, Stone IJ, Zeng W, Gregson SJ, Masterson L, Tiberghien AC, Howard PW, Thurston DE, Law CL, Senter PD (2013) A potent anti-CD70 antibody-drug conjugate combining a dimericpyrrolobenzodiazepine drug with site-specific conjugation technology. Bioconjug Chem 24:1256–1263

    Article  CAS  PubMed  Google Scholar 

  • Jumbe NL, Xin Y, Leipold DD, Crocker L, Dugger D, Mai E, Sliwkowski MX, Fielder PJ, Tibbitts J (2010) Modeling the efficacy of trastuzumab-DM1, an antibody drug conjugate, in mice. J Pharmacokinet Pharmacodyn 37:221–242

    Article  CAS  PubMed  Google Scholar 

  • Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, Chen Y, Simpson M, Tsai SP, Dennis MS, Lu Y, Meng YG, Ng C, Yang J, Lee CC, Duenas E, Gorrell J, Katta V, Kim A, Mc Dorman K, Flagella K, Venook R, Ross S, Spencer SD, Lee Wong W, Lowman HB, Vandlen R, Sliwkowski MX, Scheller RH, Polakis P, Mallet W (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26:925–932

    Article  CAS  PubMed  Google Scholar 

  • Lin K, Tibbitts J (2012) Pharmacokinetic considerations for antibody drug conjugates. Pharm Res 29:2354–2366

    Article  CAS  PubMed  Google Scholar 

  • Kantarjian H, Thomas D, Jorgensen J, Jabbour E, Kebriaei P, Rytting M, York S, Ravandi F, Kwari M, Faderl S, Rios MB, Cortes J, Fayad L, Tarnai R, Wang SA, Champlin R, Advani A, O'Brien S (2012) Inotuzumabozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol 13:403–411

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Xu K, Saad OM, Dere RC, Carrasco-Triguero M (2013) Bioanalytical assay strategies for the development of antibody-drug conjugate biotherapeutics. Bioanalysis 5:201–226

    Article  CAS  PubMed  Google Scholar 

  • Ducry L, Stump B (2010) Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem 21:5–13

    Article  CAS  PubMed  Google Scholar 

  • Gibiansky L, Gibiansky E (2014) Target-mediated drug disposition model and its approximations for antibody-drug conjugates. J Pharmacokinet Pharmacodyn 41:35–47

    Article  CAS  PubMed  Google Scholar 

  • Lewis Phillips GD Li G Dugger DL Crocker LM Parsons KL Mai E Blattler WA Lambert JM Chari RV Lutz RJ Wong WL Jacobson FS Koeppen H Schwall RH Kenkare-Mitra SR Spencer SD Sliwkowski MX (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 68:9280–9290

    Article  CAS  PubMed  Google Scholar 

  • Lin JH, Lu AY (1997) Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev 49:403–449

    CAS  PubMed  Google Scholar 

  • Lobo ED, Hansen RJ, Balthasar JP (2004) Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 93:2645–2668

    Article  CAS  PubMed  Google Scholar 

  • Lovdal T, Andersen E, Brech A, Berg T (2000) Fc receptor mediated endocytosis of small soluble immunoglobulin G immune complexes in Kupffer and endothelial cells from rat liver. J Cell Sci 113(Pt 18):3255–3266

    CAS  PubMed  Google Scholar 

  • Lu D, Sahasranaman S, Zhang Y, Girish S (2013) Strategies to address drug interaction potential for antibody-drug conjugates in clinical development. Bioanalysis 5:1115–1130

    Article  CAS  PubMed  Google Scholar 

  • Lyon RP, Meyer DL, Setter JR, Senter PD (2012) Conjugation of anticancer drugs through endogenous monoclonal antibody cysteine residues. Methods Enzymol 502:123–138

    Article  CAS  PubMed  Google Scholar 

  • Mc Donagh CF, Kim KM, Turcott E, Brown LL, Westendorf L, Feist T, Sussman D, Stone I, Anderson M, Miyamoto J, Lyon R, Alley SC, Gerber HP, Carter PJ (2008) Engineered anti-CD70 antibody-drug conjugate with increased therapeutic index. Mol Cancer Ther 7:2913–2923

    Article  CAS  Google Scholar 

  • Morgan P, Van Der Graaf PH, Arrowsmith J, Feltner DE, Drummond KS, Wegner CD, Street SD (2012) Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Discov Today 17:419–424

    Article  CAS  PubMed  Google Scholar 

  • Mould DR, Green B (2010) Pharmacokinetics and pharmacodynamics of monoclonal antibodies: concepts and lessons for drug development. Bio Drugs 24:23–39

    CAS  Google Scholar 

  • Mullard A (2013) Maturing antibody-drug conjugate pipeline hits 30. Nat Rev Drug Discov 12:329–332

    Article  CAS  PubMed  Google Scholar 

  • Nolting B (2013) Linker technologies for antibody-drug conjugates. Methods Mol Biol 1045:71–100

    Article  PubMed  Google Scholar 

  • Okeley NM, Miyamoto JB, Zhang X, Sanderson RJ, Benjamin DR, Sievers EL, Senter PD, Alley SC (2010) Intracellular activation of SGN –35, a potent anti-CD30 antibody-drug conjugate. Clin Cancer Res 16:888–897

    Article  CAS  PubMed  Google Scholar 

  • Pastuskovas CV, Maruoka EM, Shen BQ, Koeppen H, Doronina SO, Senter PD, Zioncheck TF (2005) Tissue distribution, metabolism, and excretion of the antibody-drug conjugate Herceptin-monomethylauristatin E in rats. AACR Meeting Abstracts. 2005:1195-d-1196

    Google Scholar 

  • Singh R, Erickson HK (2009) Antibody-cytotoxic agent conjugates: preparation and characterization. Methods Mol Biol 525:445–467, xiv

    Article  CAS  PubMed  Google Scholar 

  • Sanderson RJ, Hering MA, James SF, Sun MM, Doronina SO, Siadak AW, Senter PD, Wahl AF (2005) In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatinimmunoconjugate. Clin Cancer Res 11:843–852

    CAS  PubMed  Google Scholar 

  • Sapra P, Stein R, Pickett J, Qu Z, Govindan SV, Cardillo TM, Hansen HJ, Horak ID, Griffiths GL, Goldenberg DM (2005) Anti-CD74 antibody-doxorubicin conjugate, IMMU –110, in a human multiple myeloma xenograft and in monkeys. Clin Cancer Res 11:5257–5264

    Article  CAS  PubMed  Google Scholar 

  • Scott AM, Tebbutt N, Lee FT, Cavicchiolo T, Liu Z, Gill S, Poon AM, Hopkins W, Smyth FE, Murone C, Mac Gregor D, Papenfuss AT, Chappell B, Saunder TH, Brechbiel MW, Davis ID, Murphy R, Chong G, Hoffman EW, Old LJ (2007) A phase I biodistribution and pharmacokinetic trial of humanized monoclonal antibody Hu3s193 in patients with advanced epithelial cancers that express the Lewis-Y antigen. Clin Cancer Res 13:3286–3292

    Article  CAS  PubMed  Google Scholar 

  • Shah DK, Haddish-Berhane N, Betts A (2012) Bench to bedside translation of antibody drug conjugates using a multiscale mechanistic PK/PD model: a case study with brentuximab-vedotin. J Pharmacokinet Pharmacodyn 39:643–659

    Article  PubMed  Google Scholar 

  • Shah DK, Betts AM (2013) Antibody biodistribution coefficients: inferring tissue concentrations of monoclonal antibodies based on the plasma concentrations in several preclinical species and human. MAbs 5:297–305

    Article  PubMed Central  PubMed  Google Scholar 

  • Sharkey RM, Karacay H, Govindan SV, Goldenberg DM (2011) Combination radioimmunotherapy and chemoimmunotherapy involving different or the same targets improves therapy of human pancreatic carcinoma xenograft models. Mol Cancer Ther 10:1072–1081

    Article  CAS  PubMed  Google Scholar 

  • Sharkey RM, Govindan SV, Cardillo TM, Goldenberg DM (2012) Epratuzumab-SN –38: a new antibody-drug conjugate for the therapy of hematologic malignancies. Mol Cancer Ther 11:224–234

    Article  CAS  PubMed  Google Scholar 

  • Shen BQ, Bumbaca D, Saad O, Yue Q, Pastuskovas CV, Khojasteh SC, Tibbitts J, Kaur S, Wang B, Chu YW, Lorusso PM, Girish S (2012a) Catabolic fate and pharmacokinetic characterization of trastuzumabemtansine (T-DM1): an emphasis on preclinical and clinical catabolism. Curr Drug Metab 13:901–910

    Google Scholar 

  • Shen BQ, Xu K, Liu L, Raab H, Bhakta S, Kenrick M, Parsons-Reponte KL, Tien J, Yu SF, Mai E, Li D, Tibbitts J, Baudys J, Saad OM, Scales SJ, McDonald PJ, Hass PE, Eigenbrot C, Nguyen T, Solis WA, Fuji RN, Flagella KM, Patel D, Spencer SD, Khawli LA, Ebens A, Wong WL, Vandlen R, Kaur S, Sliwkowski MX, Scheller RH, Polakis P, Junutula JR (2012b) Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol 30:184–189

    Google Scholar 

  • Sievers EL, Senter PD (2013) Antibody-drug conjugates in cancer therapy. Ann Rev Med 64:15–29

    Article  CAS  PubMed  Google Scholar 

  • Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3:81–85

    CAS  PubMed  Google Scholar 

  • Stephan JP, Chan P, Lee C, Nelson C, Elliott JM, Bechtel C, Raab H, Xie D, Akutagawa J, Baudys J, Saad O, Prabhu S, Wong WL, Vandlen R, Jacobson F, Ebens A (2008) Anti-CD22-MCC-DM1 and MC-MMAF conjugates: impact of assay format on pharmacokinetic parameters determination. Bioconjug Chem 19:1673–1683

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Widdison W, Mayo M, Wilhelm S, Leece B, Chari R, Singh R, Erickson H (2011) Design of antibody-maytansinoid conjugates allows for efficient detoxification via liver metabolism. Bioconjug Chem 22:728–735

    Article  CAS  PubMed  Google Scholar 

  • Sussman D, Torrey L, Westendorf L, Zhang X, Okeley NM, Alley SC, Lyon R, Meyer D, Miyamoto JB, Benjam DR (2011) Engineered cysteine antibodies: Improved antibody-drug conjugate vehicles. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics, 2011

    Google Scholar 

  • Sutherland MS, Sanderson RJ, Gordon KA, Andreyka J, Cerveny CG, Yu C, Lewis TS, Meyer DL, Zabinski RF, Doronina SO, Senter PD, Law CL, Wahl AF (2006) Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J Biol Chem 281:10540–10547

    Article  CAS  PubMed  Google Scholar 

  • Tabrizi M, Bornstein GG, Suria H (2010) Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J 12:33–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tabrizi MA, Tseng CM, Roskos LK (2006) Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 11:81–88

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Lu Y, Manibusan A, Sellers A, Tran H, Sun Y, Phuong T, Barnett R, Hehli B, Song F, De Guzman MJ, Ensari S, Pinkstaff JK, Sullivan LM, Biroc SL, Cho H, Schultz PG, Di Joseph J, Dougher M, Ma D, Dushin R, Leal M, Tchistiakova L, Feyfant E, Gerber HP, Sapra P (2014) A general approach to site-specific antibody drug conjugates. Proc Natl Acad Sci U S A 111:1766–1771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tijink BM, Buter J, de Bree R, Giaccone G, Lang MS, Staab A, Leemans CR, van Dongen GA (2006) A phase I dose escalation study with anti-CD44v6 bivatuzumabmertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clin Cancer Res 12:6064–6072

    Article  CAS  PubMed  Google Scholar 

  • Tolcher AW, Ochoa L, Hammond LA, Patnaik A, Edwards T, Takimoto C, Smith L, de Bono J, Schwartz G, Mays T, Jonak ZL, Johnson R, DeWitte M, Martino H, Audette C, Maes K, Chari RV, Lambert JM, Rowinsky EK (2003) Cantuzumabmertansine, a maytansinoidimmunoconjugate directed to the CanAg antigen: a phase I, pharmacokinetic, and biologic correlative study. J Clin Oncol 21:211–222

    Article  CAS  PubMed  Google Scholar 

  • Waldmann TA (2003) Immunotherapy: past, present and future. Nat Med 9:269–277

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Amphlett G, Blattler WA, Lambert JM, Zhang W (2005) Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Protein Sci 14:2436–2446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang W, Wang EQ, Balthasar JP (2008) Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 84:548–558

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Audette C, Hoffee M, Lambert JM, Blattler WA (2004) Pharmacokinetics and biodistribution of the antitumor immunoconjugate, cantuzumabmertansine (huC242-DM1), and its two components in mice. J Pharmacol Exp Ther 308:1073–1082

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Liu L, Saad OM, Baudys J, Williams L, Leipold D, Shen B, Raab H, Junutula JR, Kim A, Kaur S (2011) Characterization of intact antibody-drug conjugates from plasma/serum in vivo by affinity capture capillary liquid chromatography-mass spectrometry. Anal Biochem 412:56–66

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Liu L, Dere R, Mai E, Erickson R, Hendricks A, Lin K, Junutula JR, Kaur S (2013) Characterization of the drug-to-antibody ratio distribution for antibody-drug conjugates in plasma/serum. Bioanalysis 5:1057–1071

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Ji P, Li Z, Roy P, Sahajwalla CG (2013) The antibody drug absorption following subcutaneous or intramuscular administration and its mathematical description by coupling physiologically based absorption process with the conventional compartment pharmacokinetic model. J Clin Pharmacol 53:314–325

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kedan Lin. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Sukumaran, S., Lin., K. (2015). Pharmacokinetics/Pharmacodynamics and Disposition of Antibody-Drug Conjugates. In: Wang, J., Shen, WC., Zaro, J. (eds) Antibody-Drug Conjugates. AAPS Advances in the Pharmaceutical Sciences Series, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-13081-1_7

Download citation

Publish with us

Policies and ethics