Skip to main content

Surrogate Models for Uncertainty Propagation and Sensitivity Analysis

  • Reference work entry
  • First Online:
Handbook of Uncertainty Quantification

Abstract

For computationally intensive tasks such as design optimization, global sensitivity analysis, or parameter estimation, a model of interest needs to be evaluated multiple times exploring potential parameter ranges or design conditions. If a single simulation of the computational model is expensive, it is common to employ a precomputed surrogate approximation instead. The construction of an appropriate surrogate does still require a number of training evaluations of the original model. Typically, more function evaluations lead to more accurate surrogates, and therefore a careful accuracy-vs-efficiency tradeoff needs to take place for a given computational task. This chapter specifically focuses on polynomial chaos surrogates that are well suited for forward uncertainty propagation tasks, discusses a few construction mechanisms for such surrogates, and demonstrates the computational gain on select test functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acquah, H.: Comparison of Akaike information criterion (AIC) and Bayesian information criterion (BIC) in selection of an asymmetric price relationship. J. Dev. Agric. Econ. 2(1), 001–006 (2010)

    Google Scholar 

  2. Arlot, S., Celisse, A., et al.: A survey of cross-validation procedures for model selection. Stat. Surv. 4, 40–79 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babacan, S., Molina, R., Katsaggelos, A.: Bayesian compressive sensing using Laplace priors. IEEE Trans. Image Process. 19(1), 53–63 (2010)

    Article  MathSciNet  Google Scholar 

  4. Barthelmann, V., Novak, E., Ritter, K.: High-dimensional polynomial interpolation on sparse grids. Adv. Comput. Math. 12, 273–288 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bastos, L., O’Hagan, A.: Diagnostics for Gaussian process emulators. Technometrics 51(4), 425–438 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bernardo, J., Smith, A.: Bayesian Theory. Wiley Series in Probability and Statistics. Wiley, Chichester (2000)

    MATH  Google Scholar 

  7. Blatman, G., Sudret, B.: Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 230(6), 2345–2367 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borgonovo, E., Castaings, W., Tarantola, S.: Model emulation and moment-independent sensitivity analysis: an application to environmental modelling. Environ. Model. Softw. 34, 105–115 (2012)

    Article  Google Scholar 

  9. Candès, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Probl. 23(3), 969–985 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carlin, B.P., Louis, T.A.: Bayesian Methods for Data Analysis. Chapman and Hall/CRC, Boca Raton (2011)

    MATH  Google Scholar 

  12. Chantrasmi, T., Doostan, A., Iaccarino, G.: Padé-Legendre approximants for uncertainty analysis with discontinuous response surfaces. J. Comput. Phys. 228(19), 7159–7180 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer,New York (1997)

    Google Scholar 

  14. Crestaux, T., Le Maître, O., Martinez, J.: Polynomial chaos expansion for sensitivity analysis. Reliab. Eng. Syst. Saf. 94(7), 1161–1172 (2009)

    Article  Google Scholar 

  15. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ernst, O., Mugler, A., Starkloff, H.J., Ullmann, E.: On the convergence of generalized polynomial chaos expansions. ESAIM: Math. Model. Numer. Anal. 46, 317–339 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gamerman, D., Lopes, H.F.: Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Chapman and Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  18. Genz, A.: Testing multidimensional integration routines. In: Proceedings of International Conference on Tools, Methods and Languages for Scientific and Engineering Computation. Elsevier North-Holland, Inc., pp 81–94 (1984)

    Google Scholar 

  19. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18, 209–232 (1998). doi:10.1023/A:1019129717644, (also as SFB 256 preprint 553, Univ. Bonn, 1998)

    Google Scholar 

  20. Ghanem, R., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    Book  MATH  Google Scholar 

  21. Ghosh, D., Ghanem, R.: Stochastic convergence acceleration through basis enrichment of polynomial chaos expansions. Int. J. Numer. Method Eng. 73, 162–174 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gilks, W.R.: Markov Chain Monte Carlo. Wiley Online Library (2005)

    Google Scholar 

  23. Griebel, M.: Sparse grids and related approximation schemes for high dimensional problems. In: Proceedings of the Conference on Foundations of Computational Mathematics. Santander, Spain (2005)

    MATH  Google Scholar 

  24. Huan, X., Marzouk, Y.: Simulation-based optimal Bayesian experimental design for nonlinear systems. J. Comput. Phys. 232, 288–317 (2013)

    Article  MathSciNet  Google Scholar 

  25. Isukapalli, S., Roy, A., Georgopoulos, P.: Stochastic response surface methods (SRSMs) for uncertainty propagation: application to environmental and biological systems. Risk Anal. 18(3), 351–363 (1998)

    Article  Google Scholar 

  26. Jakeman, J.D., Eldred, M.S., Sargsyan, K.: Enhancing 1-minimization estimates of polynomial chaos expansions using basis selection. J. Comput. Phys. 289, 18–34 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jansen, M.J.: Analysis of variance designs for model output. Comput. Phys. Commun. 117(1), 35–43 (1999)

    Article  MATH  Google Scholar 

  28. Jefferys, W.H., Berger, J.O.: Ockham’s razor and Bayesian analysis. Am. Sci. 80, 64–72 (1992)

    Google Scholar 

  29. Kapur, J.N.: Maximum-Entropy Models in Science and Engineering. Wiley, New Delhi (1989)

    MATH  Google Scholar 

  30. Kass, R., Raftery, A.: Bayes factors. J. Am. Stat. Assoc. 90(430), 773–795 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kersaudy, P., Sudret, B., Varsier, N., Picon, O., Wiart, J.: A new surrogate modeling technique combining Kriging and polynomial chaos expansions–application to uncertainty analysis in computational dosimetry. J. Comput. Phys. 286, 103–117 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kullback, S., Leibler, R.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  33. Le Maître, O., Knio, O.: Spectral Methods for Uncertainty Quantification. Springer, New York (2010)

    Book  MATH  Google Scholar 

  34. Le Maître, O., Knio, O., Debusschere, B., Najm, H., Ghanem, R.: A multigrid solver for two-dimensional stochastic diffusion equations. Comput. Methods Appl. Mech. Eng. 192, 4723–4744 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Le Maître, O., Ghanem, R., Knio, O., Najm, H.: Uncertainty propagation using Wiener-Haar expansions. J. Comput. Phys. 197(1), 28–57 (2004a)

    Article  MathSciNet  MATH  Google Scholar 

  36. Le Maître, O., Najm, H., Ghanem, R., Knio, O.: Multi-resolution analysis of Wiener-type uncertainty propagation schemes. J. Comput. Phys. 197, 502–531 (2004b)

    Article  MathSciNet  MATH  Google Scholar 

  37. Le Maître, O., Najm, H., Pébay, P., Ghanem, R., Knio, O.: Multi-resolution analysis scheme for uncertainty quantification in chemical systems. SIAM J. Sci. Comput. 29(2), 864–889 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, G., Rosenthal, C., Rabitz, H.: High dimensional model representations. J. Phys. Chem. A 105, 7765–7777 (2001)

    Article  Google Scholar 

  39. Marrel, A., Iooss, B., Laurent, B., Roustant, O.: Calculations of Sobol indices for the Gaussian process metamodel. Reliab. Eng. Syst. Saf. 94(3), 742–751 (2009)

    Article  Google Scholar 

  40. Marzouk, Y.M., Najm, H.N.: Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems. J. Comput. Phys. 228(6), 1862–1902 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Marzouk, Y.M., Najm, H.N., Rahn, L.A.: Stochastic spectral methods for efficient Bayesian solution of inverse problems. J. Comput. Phys. 224(2), 560–586 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mathelin, L., Gallivan, K.: A compressed sensing approach for partial differential equations with random input data. Commun. Comput. Phys. 12(4), 919–954 (2012)

    Article  MathSciNet  Google Scholar 

  43. Moore, B., Natarajan, B.: A general framework for robust compressive sensing based nonlinear regression. In: 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hoboken. IEEE, pp 225–228 (2012)

    Google Scholar 

  44. Najm, H.: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Ann. Rev. Fluid Mech. 41(1), 35–52 (2009). doi:10.1146/annurev.fluid.010908.165248

    Article  MathSciNet  MATH  Google Scholar 

  45. Orr, M.: Introduction to radial basis function networks. Technical Report, Center for Cognitive Science, University of Edinburgh (1996)

    Google Scholar 

  46. Park, T., Casella, G.: The Bayesian Lasso. J. Am. Stat. Assoc. 103(482), 681–686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Peng, J., Hampton, J., Doostan, A.: A weighted 1-minimization approach for sparse polynomial chaos expansions. J. Comput. Phys. 267, 92–111 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidyanathan, R., Tucker, P.K.: Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 41(1), 1–28 (2005)

    Article  Google Scholar 

  49. Rabitz, H., Alis, O.F.: General foundations of high-dimensional model representations. J. Math. Chem. 25, 197–233 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rabitz, H., Alis, O.F., Shorter, J., Shim, K.: Efficient input-output model representations. Comput. Phys. Commun. 117, 11–20 (1999)

    Article  MATH  Google Scholar 

  51. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT, Cambridge (2006)

    MATH  Google Scholar 

  52. Rauhut, H., Ward, R.: Sparse Legendre expansions via 1-minimization. J. Approx. Theory 164(5), 517–533 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Reagan, M., Najm, H., Ghanem, R., Knio, O.: Uncertainty quantification in reacting flow simulations through non-intrusive spectral projection. Combust. Flame 132, 545–555 (2003)

    Article  Google Scholar 

  54. Reagan, M., Najm, H., Debusschere, B., Le Maître, O., Knio, O., Ghanem, R.: Spectral stochastic uncertainty quantification in chemical systems. Combust. Theory Model. 8, 607–632 (2004)

    Article  MATH  Google Scholar 

  55. Rutherford, B., Swiler, L., Paez, T., Urbina, A.: Response surface (meta-model) methods and applications. In: Proceedings of 24th International Modal Analysis Conference, St. Louis, pp 184–197 (2006)

    Google Scholar 

  56. Saltelli, A.: Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 145, 280–297 (2002). doi:10.1016/S0010-4655(02)00280-1

    Article  MATH  Google Scholar 

  57. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. Wiley, Chichester/Hoboken (2004)

    MATH  Google Scholar 

  58. Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S.: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 181(2), 259–270 (2010)

    MATH  Google Scholar 

  59. Sargsyan, K., Debusschere, B., Najm, H., Le Maître, O.: Spectral representation and reduced order modeling of the dynamics of stochastic reaction networks via adaptive data partitioning. SIAM J. Sci. Comput. 31(6), 4395–4421 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  60. Sargsyan, K., Safta, C., Debusschere, B., Najm, H.: Multiparameter spectral representation of noise-induced competence in Bacillus subtilis. IEEE/ACM Trans. Comput. Biol. Bioinf. 9(6), 1709–1723 (2012a). doi:10.1109/TCBB.2012.107

    Article  Google Scholar 

  61. Sargsyan, K., Safta, C., Debusschere, B., Najm, H.: Uncertainty quantification given discontinuous model response and a limited number of model runs. SIAM J. Sci. Comput. 34(1), B44–B64 (2012b)

    Article  MathSciNet  MATH  Google Scholar 

  62. Sargsyan, K., Safta, C., Najm, H., Debusschere, B., Ricciuto, D., Thornton, P.: Dimensionality reduction for complex models via Bayesian compressive sensing. Int. J. Uncertain. Quantif. 4(1), 63–93 (2014). doi:10.1615/Int.J.UncertaintyQuantification.2013006821

    Article  MathSciNet  Google Scholar 

  63. Sargsyan, K., Rizzi, F., Mycek, P., Safta, C., Morris, K., Najm, H., Le Maître, O., Knio, O., Debusschere, B.: Fault resilient domain decomposition preconditioner for PDEs. SIAM J. Sci. Comput. 37(5), A2317–A2345 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  64. Schumaker, L.: Spline Functions: Basic Theory. Cambridge University Press, New York (2007)

    Book  MATH  Google Scholar 

  65. Sivia, D.S., Skilling, J.: Data Analysis: A Bayesian Tutorial, 2nd edn. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  66. Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1, 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  67. Sobol, I.M.: Theorems and examples on high dimensional model representation. Reliab. Eng. Syst. Saf. 79, 187–193 (2003)

    Article  Google Scholar 

  68. Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer Science & Business Media, New York (2012)

    Google Scholar 

  69. Sudret, B.: Global sensitivity analysis using polynomial Chaos expansions. Reliab. Eng. Syst. Saf. (2007). doi:10.1016/j.ress.2007.04.002

    Google Scholar 

  70. Sudret, B.: Meta-models for structural reliability and uncertainty quantification. In: Asian-Pacific Symposium on Structural Reliability and its Applications, Singapore, pp 1–24 (2012)

    Google Scholar 

  71. Wan, X., Karniadakis, G.E.: An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J. Comput. Phys. 209, 617–642 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  72. Webster, M., Tatang, M., McRae, G.: Application of the probabilistic collocation method for an uncertainty analysis of a simple ocean model. Technical report, MIT Joint Program on the Science and Policy of Global Change Reports Series 4, MIT (1996)

    Google Scholar 

  73. Wiener, N.: The homogeneous chaos. Am. J. Math. 60, 897–936 (1938). doi:10.2307/2371268

    Article  MathSciNet  MATH  Google Scholar 

  74. Xiu, D.: Efficient collocational approach for parametric uncertainty analysis. Commun. Comput. Phys. 2(2), 293–309 (2007)

    MathSciNet  MATH  Google Scholar 

  75. Xiu, D.: Fast numerical methods for stochastic computations: a review. J. Comput. Phys. 5(2–4), 242–272 (2009)

    MathSciNet  MATH  Google Scholar 

  76. Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  77. Xiu, D., Karniadakis, G.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002). doi:10.1137/S1064827501387826

    Article  MathSciNet  MATH  Google Scholar 

  78. Zuniga, M.M., Kucherenko, S., Shah, N.: Metamodelling with independent and dependent inputs. Comput. Phys. Commun. 184(6), 1570–1580 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khachik Sargsyan .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 19.1 shows six classes of functions employed in the numerical tests in this chapter. All functions, except the exponential one, are taken from the classical Genz family of test functions [18]. The weight parameters of the test functions are chosen according to a predefined “decay” rate w i = Ci and a normalization factor C = 1∕ i = 1 d i −1 to ensure i = 1 d w i = 1. The exact moments are analytically available and are used for reference to compare against, with the exception of the corner-peak function, for which the variance estimator (19.30) with sampling size M = 107 is used. The “true” reference values ‘true’ reference values for sensitivity indices S i are also computed via Monte Carlo, using the estimates (19.34) with M = 105. The functions are defined on \(\boldsymbol{\lambda }\in [0,1]^{d}\); assuming the inputs are i.i.d uniform random variables, the underlying linear input PC expansions are simple linear transformations λ i = 0. 5ξ i + 0. 5, relating the “physical” model inputs λ i ∈ [0, 1] to the PC surrogate inputs ξ i ∈ [−1, 1], for i = 1, , d.

Table 19.1 Test functions used in the studies of this section. The shift parameters are set to u i = 0. 3 for all dimensions i = 1, , d, while the weight parameters are selected as w i = Ci with normalization constant C = 1∕ i = 1 d i −1 to ensure i = 1 d w i = 1. The variance formula for the product-peak function is \(v(\boldsymbol{u},\boldsymbol{w}) =\prod _{ i=1}^{d}w_{i}^{4}\left ( \frac{1-u_{i}} {2(1+w_{i}^{2}(1-u_{i})^{2})} + \frac{u_{i}} {2(1+w_{i}^{2}u_{i}^{2})} + \frac{1} {2w_{i}}\left (\text{arctan}\left (w_{i}(1 - u_{i})\right ) + \text{arctan}\left (w_{i}u_{i}\right )\right )\right )-m(\boldsymbol{u},\boldsymbol{w})^{2}\)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland (outside the USA)

About this entry

Cite this entry

Sargsyan, K. (2017). Surrogate Models for Uncertainty Propagation and Sensitivity Analysis. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-12385-1_22

Download citation

Publish with us

Policies and ethics