Skip to main content

Table 19.1 Test functions used in the studies of this section. The shift parameters are set to u i = 0. 3 for all dimensions i = 1, …, d, while the weight parameters are selected as w i = C∕i with normalization constant C = 1∕∑ i = 1 d i −1 to ensure ∑ i = 1 d w i = 1. The variance formula for the product-peak function is \(v(\boldsymbol{u},\boldsymbol{w}) =\prod _{ i=1}^{d}w_{i}^{4}\left ( \frac{1-u_{i}} {2(1+w_{i}^{2}(1-u_{i})^{2})} + \frac{u_{i}} {2(1+w_{i}^{2}u_{i}^{2})} + \frac{1} {2w_{i}}\left (\text{arctan}\left (w_{i}(1 - u_{i})\right ) + \text{arctan}\left (w_{i}u_{i}\right )\right )\right )-m(\boldsymbol{u},\boldsymbol{w})^{2}\)

From: Surrogate Models for Uncertainty Propagation and Sensitivity Analysis

Id

Function

Formula

Exact mean

Exact variance

  

\(f_{\boldsymbol{u},\boldsymbol{w}}(\boldsymbol{\lambda })\)

\(m(\boldsymbol{u},\boldsymbol{w}) =\int _{ 0}^{1}f_{\boldsymbol{u},\boldsymbol{w}}(\boldsymbol{\lambda })d\boldsymbol{\lambda }\)

\(v(\boldsymbol{u},\boldsymbol{w}) =\int _{ 0}^{1}(f_{\boldsymbol{u},\boldsymbol{w}}(\boldsymbol{\lambda }) - m(\boldsymbol{u},\boldsymbol{w}))^{2}d\boldsymbol{\lambda }\)

1

Oscillatory

\(\cos \left (2\pi u_{1} + \sum _{i=1}^{d}w_{ i}\lambda _{i}\right )\)

\(\left (\cos 2\pi u_{1} + \frac{1} {2}\sum _{i=1}^{d}w_{ i}\right )\prod _{i=1}^{d}\frac{2\sin (w_{i}/2)} {w_{i}}\)

\(\frac{1} {2} + \frac{1} {2}m(2\boldsymbol{u},2\boldsymbol{w}) - m(\boldsymbol{u},\boldsymbol{w})^{2}\)

2

Gaussian

\(\exp \left (-\sum _{i=1}^{d}w_{ i}^{2}(\lambda _{ i} - u_{i})^{2}\right )\)

\(\prod _{ i=1}^{d} \frac{\sqrt{\pi }} {2w_{i}}\left (\text{erf}\left (w_{i}(1 - u_{i})\right ) + \text{erf}\left (w_{i}u_{i}\right )\right )\)

\(m(\boldsymbol{u},\sqrt{2}\boldsymbol{w}) - m(\boldsymbol{u},\boldsymbol{w})^{2}\)

3

Exponential

\(\exp \left (\sum _{i=1}^{d}w_{ i}(\lambda _{i} - u_{i})\right )\)

\(\prod _{i=1}^{d} \frac{1} {w_{i}}\left (\exp \left (w_{i}(1 - u_{i})\right ) -\exp \left (-w_{i}u_{i}\right )\right )\)

\(m(\boldsymbol{u},2\boldsymbol{w}) - m(\boldsymbol{u},\boldsymbol{w})^{2}\)

4

Continuous

\(\exp \left (-\sum _{i=1}^{d}w_{ i}\vert \lambda _{i} - u_{i}\vert \right )\)

\(\prod _{i=1}^{d} \frac{1} {w_{i}}\left (2 -\exp \left (-w_{i}u_{i}\right ) -\exp \left (w_{i}(u_{i} - 1)\right )\right )\)

\(m(\boldsymbol{u},2\boldsymbol{w}) - m(\boldsymbol{u},\boldsymbol{w})^{2}\)

5

Corner peak

\(\left (1 + \sum _{i=1}^{d}w_{ i}\lambda _{i}\right )^{-(d+1)}\)

\(\frac{1} {d!\prod _{i=1}^{d}w_{i}}\:\sum _{r\in \{0,1\}^{d}} \frac{(-1)^{\vert \vert r\vert \vert _{1}}} {1 +\sum _{ i=1}^{d}w_{i}r_{i}}\)

Sampling estimator (19.34) with M = 107

6

Product peak

\(\prod _{i=1}^{d} \frac{w_{i}^{2}} {1 + w_{i}^{2}(\lambda _{i} - u_{i})^{2}}\)

\(\prod _{i=1}^{d}w_{ i}\left (\text{arctan}\left (w_{i}(1 - u_{i})\right ) + \text{arctan}\left (w_{i}u_{i}\right )\right )\)

See the caption