Skip to main content

On the String Consensus Problem and the Manhattan Sequence Consensus Problem

  • Conference paper
String Processing and Information Retrieval (SPIRE 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8799))

Included in the following conference series:

Abstract

In the Manhattan Sequence Consensus problem (MSC problem) we are given k integer sequences, each of length ℓ, and we are to find an integer sequence x of length ℓ (called a consensus sequence), such that the maximum Manhattan distance of x from each of the input sequences is minimized. For binary sequences Manhattan distance coincides with Hamming distance, hence in this case the string consensus problem (also called string center problem or closest string problem) is a special case of MSC. Our main result is a practically efficient \(\mathcal{O}(\ell)\)-time algorithm solving MSC for k ≤ 5 sequences. Practicality of our algorithms has been verified experimentally. It improves upon the quadratic algorithm by Amir et al. (SPIRE 2012) for string consensus problem for k = 5 binary strings. Similarly as in Amir’s algorithm we use a column-based framework. We replace the implied general integer linear programming by its easy special cases, due to combinatorial properties of the MSC for k ≤ 5. We also show that for a general parameter k any instance can be reduced in linear time to a kernel of size k!, so the problem is fixed-parameter tractable. Nevertheless, for k ≥ 4 this is still too much for any naive solution to be feasible in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amir, A., Paryenty, H., Roditty, L.: Configurations and minority in the string consensus problem. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 42–53. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Amir, A., Paryenty, H., Roditty, L.: On the hardness of the consensus string problem. Inf. Process. Lett. 113(10-11), 371–374 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andoni, A., Indyk, P., Patrascu, M.: On the optimality of the dimensionality reduction method. In: FOCS, pp. 449–458. IEEE Computer Society (2006)

    Google Scholar 

  4. Badoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In: Reif, J.H. (ed.) STOC, pp. 250–257. ACM (2002)

    Google Scholar 

  5. Boucher, C., Brown, D.G., Durocher, S.: On the structure of small motif recognition instances. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 269–281. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Cohen, G.D., Honkala, I.S., Litsyn, S., Solé, P.: Long packing and covering codes. IEEE Transactions on Information Theory 43(5), 1617–1619 (1997)

    Article  MATH  Google Scholar 

  7. Fischer, K., Gärtner, B., Kutz, M.: Fast smallest-enclosing-ball computation in high dimensions. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 630–641. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Frances, M., Litman, A.: On covering problems of codes. Theory Comput. Syst. 30(2), 113–119 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gärtner, B., Schönherr, S.: An efficient, exact, and generic quadratic programming solver for geometric optimization. In: Symposium on Computational Geometry, pp. 110–118 (2000)

    Google Scholar 

  11. Graham, R.L., Sloane, N.J.A.: On the covering radius of codes. IEEE Transactions on Information Theory 31(3), 385–401 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for closest string and related problems. Algorithmica 37(1), 25–42 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kannan, R.: Minkowski’s convex body theorem and integer programming. Mathematics of Operations Reasearch 12, 415–440 (1987)

    Article  MATH  Google Scholar 

  14. Kociumaka, T., Pachocki, J.W., Radoszewski, J., Rytter, W., Waleń, T.: On the string consensus problem and the Manhattan sequence consensus problem (full version). CoRR, abs/1407.6144 (2014)

    Google Scholar 

  15. Kumar, P., Mitchell, J.S.B., Yildirim, E.A.: Computing core-sets and approximate smallest enclosing hyperspheres in high dimensions. In: 5th Workshop on Algorithm Engineering and Experiments (2003)

    Google Scholar 

  16. Lanctôt, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection problems. In: Tarjan, R.E., Warnow, T. (eds.) SODA, pp. 633–642. ACM/SIAM (1999)

    Google Scholar 

  17. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Mathematics of Operations Research 8, 538–548 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lokshtanov, D.: New Methods in Parameterized Algorithms and Complexity. PhD thesis, University of Bergen (2009)

    Google Scholar 

  19. Ma, B., Sun, X.: More efficient algorithms for closest string and substring problems. SIAM J. Comput. 39(4), 1432–1443 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mazumdar, A., Polyanskiy, Y., Saha, B.: On Chebyshev radius of a set in Hamming space and the closest string problem. In: ISIT, pp. 1401–1405. IEEE (2013)

    Google Scholar 

  21. Ritter, J.: An efficient bounding sphere. In: Glassner, A.S. (ed.) Gems. Academic Press, Boston (1990)

    Google Scholar 

  22. Sylvester, J.J.: A question in the geometry of situation. Quarterly Journal of Pure and Applied Mathematics 1, 79 (1857)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kociumaka, T., Pachocki, J.W., Radoszewski, J., Rytter, W., Waleń, T. (2014). On the String Consensus Problem and the Manhattan Sequence Consensus Problem. In: Moura, E., Crochemore, M. (eds) String Processing and Information Retrieval. SPIRE 2014. Lecture Notes in Computer Science, vol 8799. Springer, Cham. https://doi.org/10.1007/978-3-319-11918-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11918-2_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11917-5

  • Online ISBN: 978-3-319-11918-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics