Skip to main content

Configurations and Minority in the String Consensus Problem

  • Conference paper
String Processing and Information Retrieval (SPIRE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7608))

Included in the following conference series:

Abstract

The Closest String Problem is defined as follows. Let S be a set of k strings {s 1,…s k }, each of length ℓ, find a string \(\hat{s}\), such that the maximum Hamming distance of \(\hat{s}\) from each of the strings is minimized. We denote this distance with d. The string \(\hat{s}\) is called a consensus string. In this paper we present two main algorithms, the Configuration algorithm with O(k 2k) running time for this problem, and the Minority algorithm.

The problem was introduced by Lanctot, Li, Ma, Wang and Zhang [13]. They showed that the problem is \(\cal{NP}\)-hard and provided an IP approximation algorithm. Since then the closest string problem has been studied extensively. This research can be roughly divided into three categories: Approximate, exact and practical solutions. This paper falls under the exact solutions category. Despite the great effort to obtain efficient algorithms for this problem an algorithm with the natural running time of O(ℓ k) was not known. In this paper we close this gap.

Our result means that algorithms solving the closest string problem in times O(ℓ2), O(ℓ3), O(ℓ4) and O(ℓ5) exist for the cases of k = 2,3,4 and 5, respectively. It is known that, in fact, the cases of k = 2,3, and 4 can be solved in linear time. No efficient algorithm is currently known for the case of k = 5. We prove the minority lemma that exploit surprising properties of the closest string problem and enable constructing the closest string in a sequential fashion. This lemma with some additional ideas give an O(ℓ2) time algorithm for computing a closest string of 5 binary strings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amir, A., Landau, G.M., Na, J.C., Park, H., Park, K., Sim, J.S.: Consensus Optimizing Both Distance Sum and Radius. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 234–242. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Amir, A., Paryenty, H., Roditty, L.: Approximations and Partial Solutions for the Consensus Sequence Problem. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp. 168–173. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Andoni, A., Indyk, P., Patrascu, M.: On the optimality of the dimensionality reduction method. In: Proc. 47th IEEE Symposium on the Foundation of Computer Science (FOCS), pp. 449–458 (2006)

    Google Scholar 

  4. Ben-Dor, A., Lancia, G., Perone, J., Ravi, R.: Banishing Bias from Consensus Sequences. In: Hein, J., Apostolico, A. (eds.) CPM 1997. LNCS, vol. 1264, pp. 247–261. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  5. Boucher, C., Brown, D.G., Durocher, S.: On the Structure of Small Motif Recognition Instances. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 269–281. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Boucher, C., Wilkie, K.: Why Large Closest String Instances Are Easy to Solve in Practice. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 106–117. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Chimani, M., Woste, M., Bocker, S.: A closer look at the closest string and closest substring problem. In: Proc. 13th Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 13–24 (2011)

    Google Scholar 

  8. Evans, P.A., Smith, A., Wareham, H.T.: The parameterized complexity of p-center approximate substring problems. Technical Report TR01-149, Faculty of Computer Science, University of New Brunswick, Canada (2001)

    Google Scholar 

  9. Frances, M., Litman, A.: On covering problems of codes. Theory of Computing Systems 30(2), 113–119 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Gramm, J., Niedermeier, R., Rossmanith, P.: Exact Solutions for CLOSEST STRING and Related Problems. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 441–453. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for closest string and related problems. Algorithmica 37(1), 25–42 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hufsky, F., Kuchenbecker, L., Jahn, K., Stoye, J., Böcker, S.: Swiftly Computing Center Strings. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 325–336. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Lanctot, K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection problems. Information and Computation 185(1), 41–55 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lenstra, H.W.: Integer programming with a fixed number of variables. Mathematics of Operations Research 8, 538–548 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. Journal of the ACM 49(2), 157–171 (2002)

    Article  MathSciNet  Google Scholar 

  16. Ma, B., Sun, X.: More efficient algorithms for closest string and substring problems. SIAM J. Computing 39(4), 1432–1443 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meneses, C.N., Lu, Z., Oliveira, C.A.S., Pardalos, P.M.: Optimal solutions for the closest-string problem via integer programming. INFORMS Journal on Computing 16(4), 419–429 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Stojanovic, N., Berman, P., Gumucio, D., Hardison, R., Miller, W.: A Linear-Time Algorithm for the 1-Mismatch Problem. In: Rau-Chaplin, A., Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 1997. LNCS, vol. 1272, pp. 126–135. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  19. Sze, S.-H., Lu, S., Chen, J.: Integrating Sample-Driven and Pattern-Driven Approaches in Motif Finding. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 438–449. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amir, A., Paryenty, H., Roditty, L. (2012). Configurations and Minority in the String Consensus Problem. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds) String Processing and Information Retrieval. SPIRE 2012. Lecture Notes in Computer Science, vol 7608. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34109-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34109-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34108-3

  • Online ISBN: 978-3-642-34109-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics