Skip to main content

Therapeutic and Prophylactic Tools for Sporotrichosis: Current Strategies and Future Tendencies

  • Chapter
Sporotrichosis

Abstract

Over the past 3 decades, important progress in the therapy of fungal infections has been made. Although several chemotherapeutic agents are relatively effective against the different species of the Sporothrix schenckii complex, even the primary drugs used to treat sporotrichosis are the ergosterol inhibitors: triazole compounds, terbinafine, and amphotericin B. Despite the general effectiveness of these drugs, diverse problems remain, including chronic therapy, toxicity manifestations, and fungal resistance, which limit their use. These problems have stimulated a search for new agents that might be active against a wide range of clinical isolates, that are well absorbed after oral administration, that are widely distributed throughout body tissues, including the central nervous system, and that are relatively nontoxic. This chapter reviews the current therapy strategies for human and animal sporotrichosis and updates the more relevant strategies in study for prophylaxis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adamu M, Naidoo V, Eloff JN (2012) Some southern African plant species used to treat helminth infections in ethnoveterinary medicine have excellent antifungal activities. BMC Complement Altern Med 12:213

    Article  PubMed Central  PubMed  Google Scholar 

  • Agüero M, Alvarez S, Luna L et al (2007) Antifungal activity of Zuccagnia punctata Cav. Evidences for the mechanism of action. Planta Med 73:1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Almeida SR (2012) Therapeutic monoclonal antibody for sporotrichosis. Front Microbiol 28(3):409

    Google Scholar 

  • Almeida-Paes R, Oliveira MME, Freitas DFS et al (2014) Sporotrichosis in Rio de Janeiro, Brazil: Sporothrix brasiliensis is associated with atypical clinical presentations. PLoS Negl Trop Dis 8(9):e3094

    Article  PubMed Central  PubMed  Google Scholar 

  • Alvarado-Ramírez E, Torres-Rodríguez JM (2007) In vitro susceptibility of Sporothrix schenckii to six antifungal agents determined using three different methods. Antimicrob Agents Chemother 51(7):2420–2423

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Apisariyakul A, Vanittanakom N, Buddhasukh D (1995) Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae). J Ethnopharmacol 49:163–169

    Article  CAS  PubMed  Google Scholar 

  • Arthington-Skaggs BA, Lee-Yang W, Ciblak MA et al (2002) Candidemia Active Surveillance Group. Comparison of visual and spectrophotometric methods of broth microdilution MIC end point determination and evaluation of a sterol quantitation method for in vitro susceptibility testing of fluconazole and itraconazoleagainst trailing and nontrailing Candida isolates. Antimicrob Agents Chemother 46(8):2477–2481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baginski M, Czub J (2009) Amphotericin B and its new derivatives–mode of action. Curr Drug Metab 10(5):459–469

    Article  CAS  PubMed  Google Scholar 

  • Barros MBL, Schubach TMP, Galhardo MCG et al (2001) Sporotrichosis: an emergent zoonosis in Rio de Janeiro. Mem Inst Oswaldo Cruz 96:777–779

    Article  Google Scholar 

  • Barros MBL, Schubach AO, Valle ACF et al (2004) Cat-transmitted sporotrichosis epidemic in Rio de Janeiro, Brazil: description of a series of cases. Clin Infect Dis 38:529–535

    Article  PubMed  Google Scholar 

  • Barros MB, Schubach TM, Coll JO et al (2010) Sporotrichosis: development and challenges of an epidemic. Rev Panam Salud Publica 27(6):455–460

    PubMed  Google Scholar 

  • Barros MBL, Almeida-Paes R, Schubach AO (2011a) Sporothrix schenckii and sporotrichosis. Clin Microbiol Rev 24:633–654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barros MBL, Schubach AO, de Vasconcellos Carvalhaes de Oliveira R et al (2011b) Treatment of cutaneous sporotrichosis with itraconazole-study of 645 patients. Clin Infect Dis 52(12):e200–e206

    Article  Google Scholar 

  • Bonifaz A, Fierro L, Saúl A et al (2008) Cutaneous sporotrichosis. Intermittent treatment (pulses) with itraconazole. Eur J Dermatol 18(1):61–64

    CAS  PubMed  Google Scholar 

  • Borelli C, Schaller M, Niewerth M et al (2008) Modes of action of the new arylguanidine abafungin beyond interference with ergosterol biosynthesis and in vitro activity against medically important fungi. Chemotherapy 54(4):245–259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bouzabata A, Bazzali O, Cabral C et al (2013) New compounds, chemical composition, antifungal activity and cytotoxicity of the essential oil from Myrtus nivellei Batt. & Trab., an endemic species of Central Sahara. J Ethnopharmacol 149(3):613–620

    Article  CAS  PubMed  Google Scholar 

  • Buissa-Filho R, Puccia R, Marques AF et al (2008) The monoclonal antibody against the major diagnostic antigen of Paracoccidioides brasiliensis mediates immuneprotection in infected BALB/c mice challenged intratracheally with the fungus. Infect Immun 76:3321–3328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bunce PE, Yang L, Chun S et al (2012) Disseminated sporotrichosis in a patient with hairy cell leukemia treated with amphotericin B and posaconazole. Med Mycol 50:197–201

    Article  CAS  PubMed  Google Scholar 

  • Chapman SW, Pappas P, Kauffmann C et al (2004) Comparative evaluation of the efficacy and safety of two doses of terbinafine (500 and 1000 mg day(-1)) in the treatment of cutaneous or lymphocutaneous sporotrichosis. Mycoses 47:62–68

    Article  CAS  PubMed  Google Scholar 

  • Chaves AR, Campos MP, Barros MB et al (2013) Treatment abandonment in feline sporotrichosis - study of 147 cases. Zoonoses Public Health 60(2):149–153

    Article  CAS  PubMed  Google Scholar 

  • Constantinides PP, Chaubal MV, Shorr R (2008) Advances in lipid nanodispersions for parenteral drug delivery and targeting. Adv Drug Deliv Rev 60(6):757–767

    Article  CAS  PubMed  Google Scholar 

  • Crothers SL, White SD, Ihrke PJ et al (2009) Sporotrichosis: a retrospective evaluation of 23 cases seen in northern California (1987-2007). Vet Dermatol 20(4):249–259

    Article  PubMed  Google Scholar 

  • Cruz MC, Santos PO, Barbosa AM Jr et al (2007) Antifungal activity of Brazilian medicinal plants involved in popular treatment of mycoses. J Ethnopharmacol 111:409–412

    Article  CAS  PubMed  Google Scholar 

  • Czerninski R, Pikovsky A, Gati I, Friedman M et al (2015) Comparison of the efficacy of a novel sustained release clotrimazole varnish and clotrimazole troches for the treatment of oral candidiasis. Clin Oral Investig 19(2):467–473

    Article  PubMed  Google Scholar 

  • Daboit TC, Stopiglia CD, von Poser GL et al (2010) Antifungal activity of Pterocaulon alopecuroides (Asteraceae) against chromoblastomycosis agents. Mycoses 53:246–250

    Article  PubMed  Google Scholar 

  • Dai T, Fuchs BB, Coleman JJ et al (2012) Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform. Front Microbiol 3:120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Danelutte AP, Lago JH, Young MC et al (2003) Antifungal flavanones and prenylated hydroquinones from Piper crassinervium Kunth. Phytochemistry 64:555–559

    Article  CAS  PubMed  Google Scholar 

  • Darisipudi MN, Allam R, Rupanagudi KV et al (2011) Polyene macrolide antifungal drugs trigger interleukin1β secretion by activating the NLRP3 inflammasome. PLoS One 6(5):e19588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Almeida JR, Kaihami GH, Jannuzzi GP et al (2015) Therapeutic vaccine using a monoclonal antibody against a 70-kDa glycoprotein in mice infected with highly virulent Sporothrix schenckii and Sporothrix brasiliensis. Med Mycol 53(1):42–50

    Article  PubMed  Google Scholar 

  • de Paula e Silva AC, Oliveira HC, Silva JF et al (2013) Microplate alamarBlue assay for Paracoccidioides susceptibility testing. J Clin Microbiol 51(4):1250–1252

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de Sousa MG, Belda W Jr, Spina R et al (2014) Topical application of imiquimod as a treatment for chromoblastomycosis. Clin Infect Dis 58(12):1734–1737

    Article  PubMed Central  CAS  Google Scholar 

  • de Souza CML, Nascimento EM, Aparecida MR et al (2011) Gamma radiation effects on Sporothrix schenckii yeast cells. Mycopathologia 171:395–401

    Article  Google Scholar 

  • Delmas G, Park S, Chen ZW et al (2002) Efficacy of orally delivered cochleates containing amphotericin B in a murine model of aspergillosis. Antimicrob Agents Chemother 46(8):2704–2707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Denning DW, Hope WW (2010) Therapy for fungal diseases: opportunities and priorities. Trends Microbiol 18:195–204

    Article  CAS  PubMed  Google Scholar 

  • Duan XH, Jiang R, Wen YJ et al (2013) Some 2S albumin from peanut seeds exhibits inhibitory activity against Aspergillus flavus. Plant Physiol Biochem 66:84–90

    Article  CAS  PubMed  Google Scholar 

  • Edwards JE Jr (2012) Fungal cell wall vaccines: an update. J Med Microbiol 61(Pt 7):895–903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Escalante AM, Santecchia CB, López SN et al (2002) Isolation of antifungal saponins from Phytolacca tetramera, an Argentinean species in critic risk. J Ethnopharmacol 82:29–34

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Silva F, Capilla J, Mayayo E et al (2012) Efficacy of posaconazole in murine experimental sporotrichosis. Antimicrob Agents Chemother 56(5):2273–2277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferreira CP, Galhardo MC, Valle AC (2011) Cryosurgery as adjuvant therapy in cutaneous sporotrichosis. Braz J Infect Dis 15(2):181–183

    Article  PubMed  Google Scholar 

  • Flores-García A, Velarde-Félix JS, Garibaldi-Becerra V et al (2015) Recombinant murine IL-12 promotes a protective Th1/cellular response in Mongolian gerbils infected with Sporothrix schenckii. J Chemother 27(2):87–93

    Article  PubMed  CAS  Google Scholar 

  • Francesconi G, Valle ACF, Passos SR et al (2009) Terbinafine (250 mg/day): an effective and safe treatment of cutaneous sporotrichosis. J Eur Acad Dermatol Venereol 23:1273–1276

    Article  CAS  PubMed  Google Scholar 

  • Francesconi G, Valle ACF, Passos SRL et al (2011) Comparative study of 250 mg/day terbinafine and 100 mg/day itraconazole for the treatment of cutaneous sporotrichosis. Mycopathologia 171:349–354

    Article  CAS  PubMed  Google Scholar 

  • Franco DD, Nascimento RC, Ferreira KS et al (2012) Antibodies against Sporothrix schenckii enhance TNF-a production and killing by macrophages. Scand J Immunol 75:142–146

    Article  CAS  Google Scholar 

  • Freitas DF, de Siqueira Hoagland B, do Valle AC et al (2012) Sporotrichosis in HIV-Infected patients: report of 21 cases of endemic sporotrichosis in Rio de Janeiro, Brazil. Med Mycol 50:170–178

    Article  PubMed  Google Scholar 

  • Freitas DFS, do Valle ACF, Silva MBT et al (2014) Sporotrichosis: an emerging neglected opportunistic infection in HIV-infected patients in Rio de Janeiro, Brazil. PLoS Negl Trop Dis 8(8), e3110

    Article  PubMed Central  PubMed  Google Scholar 

  • Gaitán I, Paz AM, Zacchino SA et al (2011) Subcutaneous antifungal screening of Latin American plant extracts against Sporothrix schenckii and Fonsecaea pedrosoi. Pharm Biol 49(9):907–919

    Article  PubMed  CAS  Google Scholar 

  • Gilaberte Y, Aspiroz C, Alejandre MC et al (2014) Cutaneous sporotrichosis treated with photodynamic therapy: an in vitro and in vivo study. Photomed Laser Surg 32(1):54–57

    Article  PubMed Central  PubMed  Google Scholar 

  • Goldman DL, Casadevall A, Zuckier LS (1997) Pharmacokinetics and biodistribution of a monoclonal antibody to Cryptococcus neoformans capsular polysaccharide antigen in a rat model of cryptococcal meningitis: implications for passive immunotherapy. J Med Vet Mycol 35(4):271–278

    Article  CAS  PubMed  Google Scholar 

  • Goldstein AS, Lukaynov AN (1997) Formation of high axial ratio microstructures from natural and synthetic sphingo lipids. Chem Phys Lipids 88:21–36

    Article  CAS  PubMed  Google Scholar 

  • Greene CE, Calpin J (2012) Antimicrobial drug formulary. In: Greene CE (ed) Infectious diseases in dog and cat, 4th edn. Saunders Elsevier, St. Louis, pp 1207–1320

    Google Scholar 

  • Gremião ID, Pereira SA, Rodrigues AM et al (2006) Tratamento cirúrgico associado à terapia antifúngica convencional na esporotricose felina. Acta Sci Vet 34(2):221–223

    Google Scholar 

  • Gremião ID, Schubach TM, Pereira SA et al (2009) Intralesional amphotericin B in a cat with refractory localised sporotrichosis. J Feline Med Surg 11(8):720–723

    Article  PubMed  Google Scholar 

  • Gremião ID, Schubach TM, Pereira SA et al (2011) Treatment of refractory feline sporotrichosis with a combination of intralesional amphotericin B and oral itraconazole. Aust Vet J 89(9):346–351

    Article  PubMed  CAS  Google Scholar 

  • Gremião ID, Menezes RC, Schubach TMP et al (2015) Feline sporotrichosis: epidemiological and clinical aspects. Med Mycol 53(1):15–21

    Article  PubMed  Google Scholar 

  • Guterres KA, de Matos CB, Osório Lda G et al (2014) The use of (1-3) β-glucan along with itraconazole against canine refractory sporotrichosis. Mycopathologia 177(3–4):217–221

    CAS  PubMed  Google Scholar 

  • Gutierrez-Galhardo MC, Oliveira RMZ, Valle ACF et al (2008) Molecular epidemiology and antifungal susceptibility patterns of Sporothrix schenckii isolates from a cat-transmitted epidemic of sporotrichosis in Rio de Janeiro, Brazil. Med Mycol 46:141–151

    Article  CAS  Google Scholar 

  • Heidrich D, Stopiglia CD, Senter L et al (2011) Successful treatment of terbinafine in a case of sporotrichosis. An Bras Dermatol 86(4 Suppl 1):S182–S185

    Article  PubMed  Google Scholar 

  • Heit MC, Riviere J (1995) Antifungal and antiviral drugs. In: Adams R (ed) Veterinary pharmacology and therapeutics, 7th edn. Iowa State University Press, Ames, pp 855–885

    Google Scholar 

  • Hirano M, Watanabe K, Murakami M et al (2006) A case of feline sporotrichosis. J Vet Med Sci 68(3):283–284

    Article  PubMed  Google Scholar 

  • Honse CO, Rodrigues AM, Gremião ID et al (2010) Use of local hyperthermia to treat sporotrichosis in a cat. Vet Rec 166(7):208–209

    Article  CAS  PubMed  Google Scholar 

  • Italia JL, Yahya MM, Singh D (2009) Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone®. Pharm Res 26(6):1324–1331

    Article  CAS  PubMed  Google Scholar 

  • Johann S, Pizzolatti MG, Donnici CL et al (2007) Antifungal properties of plants used in Brazilian traditional medicine against clinically relevant fungal pathogens. Braz J Microbiol 38:632–637

    Article  Google Scholar 

  • Johann S, Cota BB, Souza-Fagundes EM et al (2009) Antifungal activities of compounds isolated from Piper abutiloides Kunth. Mycoses 52(6):499–506

    Article  CAS  PubMed  Google Scholar 

  • Jung SH, Lim DH, Jung SH et al (2009) Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur J Pharm Sci 37:313–320

    Article  CAS  PubMed  Google Scholar 

  • Kalaskar PS, Karande VV, Bannalikar AS et al (2012) Antifungal activity of leaves of mangroves plant acanthus licifolius against Aspergillus fumigatus. Indian J Pharm Sci 74(6):575–579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katz HI (1999) Drug interactions of the newer oral antifungal agents. Br J Dermatol 141(Suppl 56):26–32

    Article  PubMed  Google Scholar 

  • Kauffman CA, Bustamante B, Chapman SW et al (2007) Clinical Practice Guidelines for the management of sporotrichosis. 2007 update by the Infectious Disease Society of America. Clin Infect Dis 45:1255–1265

    Article  CAS  PubMed  Google Scholar 

  • Kohler LM, Monteiro PC, Hahn RC et al (2004) In vitro susceptibilities of isolates of Sporothrix schenckii to itraconazole and terbinafine. J Clin Microbiol 42(9):4319–4320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krenova Z, Pavelka Z, Lokaj P et al (2010) Successful treatment of life-threatening Candida peritonitis in a child with abdominal non-Hodgkin lymphoma using Efungumab and amphotericin B colloid dispersion. J Pediatr Hematol Oncol 32(2):128–130

    Article  PubMed  Google Scholar 

  • Kullberg BJ, van de Veerdonk F, Netea MG (2014) Immunotherapy: a potential adjunctive treatment for fungal infection. Curr Opin Infect Dis 27(6):511–516

    Article  CAS  PubMed  Google Scholar 

  • Kwon-Chung KJ, Bennett JE (1992) Medical mycology, 2nd edn. Lea & Febiger, Philadelphia, pp 707–729

    Google Scholar 

  • Lacaz CS (2002) Esporotricose e outras micoses gomosas. In: Lacaz CS, Porto E, Martins JEC, Heins-vaccari EM, Melo NT (eds) Tratado de Micologia Médica Lacaz, 9th edn. Sarvier, São Paulo, pp 479–497

    Google Scholar 

  • Larsen RA, Pappas PG, Perfect J et al (2005) Phase I evaluation of the safety and pharmacokinetics of murine-derived anticryptococcal antibody 18B7 in subjects with treated cryptococcal meningitis. Antimicrob Agents Chemother 49(3):952–958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laverdiere M, Bow EJ, Rotstein C et al (2014) Therapeutic drug monitoring for triazoles: a needs assessment review and recommendations from a Canadian perspective. Can J Infect Dis Med Microbiol 25(6):327–343

    PubMed Central  PubMed  Google Scholar 

  • Lee KC, Carlson PA (1999) Protection of deca-peptide from proteolytic cleavage by lipidation and self assembly into high axial ratio micro structures. Langmuir 15:550–5508

    Google Scholar 

  • Lee KC, Lukaynov AN (1998) Formation of high axial ratio microstructures from peptides modified with glutamic acid dialkyl amides. Biochim Biophys Acta 1371:168–184

    Article  CAS  PubMed  Google Scholar 

  • Lloret A, Hartmann K, Pennisi MG et al (2013) Sporotrichosis in cats: ABCD guidelines on prevention and management. J Feline Med Surg 15:619–623

    Article  PubMed  Google Scholar 

  • Lopez-Berestein G, Hopfer RL, Mehta R et al (1984) Liposome-encapsulated amphotericin B for the treatment of disseminated candidiasis in neutropenic mice. J Infect Dis 150:278–283

    Article  CAS  PubMed  Google Scholar 

  • Lyon JP, Silva Azevedo C, Moreira LM et al (2011) Photodynamic antifungal therapy against chromoblastomycosis. Mycopathologia 172:293–297

    Article  CAS  PubMed  Google Scholar 

  • Madrid IM, Xavier MO, Mattei AS et al (2007) Esporotricose óssea e cutânea em um canino. Braz J Vet Res Anim Sci 44(6):441–443

    Google Scholar 

  • Malheiros A, Cechinel Filho V, Schmitt CB et al (2005) Antifungal activity of drimane sesquiterpenes from Drimys brasiliensis using bioassay guided fractionation. J Pharm Pharm Sci 8:335–339

    CAS  PubMed  Google Scholar 

  • Malik R, Krockenberger MB, O’Brien CR (2009) Intra-lesional amphotericin B—worth a try, maybe for lots of things, but we need more data! J Feline Med Surg 11:621–623

    Article  PubMed  Google Scholar 

  • Mannino R, Gold-Foserite S, Kheiri MT et al (1998) Targeting immune response induction with cochleate and liposomes based vaccines. Adv Drug Deliv Rev 32:237–287

    Google Scholar 

  • Maregesi SM, Pieters L, Ngassapa OD et al (2008) Screening of some Tanzanian medicinal plants from Bunda district for antibacterial, antifungal and antiviral activities. J Ethnopharmacol 119:58–66

    Article  PubMed  Google Scholar 

  • Marimon R, Serena C, Gene J et al (2008) In vitro antifungal susceptibilities of five species of Sporothrix. Antimicrob Agents Chemother 52(2):732–734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Masoko P, Picard J, Eloff JN (2005) Antifungal activities of six South African Terminalia species (Combretaceae). J Ethnopharmacol 99(2):301–308

    Article  CAS  PubMed  Google Scholar 

  • Masoko P, Mdee LK, Mampuru LJ et al (2008) Biological activity of two related triterpenes isolated from Combretum nelsonii (Combretaceae) leaves. Nat Prod Res 22(12):1074–1084

    Article  CAS  PubMed  Google Scholar 

  • Masoko P, Picard J, Howard RL et al (2010) In vivo antifungal effect of Combretum and Terminalia species extracts on cutaneous wound healing in immunosuppressed rats. Pharm Biol 48(6):621–632

    Article  CAS  PubMed  Google Scholar 

  • Meinerz AR, Nascente PS, Schuch LF et al (2007) Suscetibilidade in vitro de isolados de Sporothrix schenckii frente à terbinafina e itraconazol. Rev Soc Bras Med Trop 40:60–62

    Article  PubMed  Google Scholar 

  • Merck (2014) http://www.merck.com/product/usa/pi_circulars/n/noxafil/noxafil_pi.pdf. Accessed 25 Aug 2014

  • Mesa-Arango AC, Scorzoni L, Zaragoza O (2012) It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Front Microbiol 3:286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Micromedex: The Complete Drug Reference (2014) http://www-micromedexsolutions-com.ez68.periodicos.capes.gov.br/micromedex2/librarian/. Accessed 28 Aug 2014

  • Mihu MR, Pattabhi R, Nosanchuk JD (2014) The impact of antifungals on toll-like receptors. Front Microbiol 5:1–5

    Article  Google Scholar 

  • Moen MD, Lyseng-Williamson KA, Scott LJ (2009) Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs 69(3):361–392

    Article  CAS  PubMed  Google Scholar 

  • Mokoka TA, McGaw LJ, Eloff JN (2010) Antifungal efficacy of ten selected South African plant species against Cryptococcus neoformans. Pharm Biol 48(4):397–404

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Lee S, Mukherjee J et al (1994) Monoclonal antibodies to Cryptococcus neoformans capsular polysaccharide modify the course of intravenous infection in mice. Infect Immun 62(3):1079–1088

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nanjappa SG, Klein BS (2014) Vaccine immunity against fungal infections. Curr Opin Immunol 28:27–33

    Article  CAS  PubMed  Google Scholar 

  • Nascimento RC, Espíndola NM, Castro RA et al (2008) Passive immunization with monoclonal antibody against a 70-kDa putative adhesin of Sporothrix schenckii induces protection in murine sporotrichosis. Eur J Immunol 38(11):3080–3089

    Article  CAS  PubMed  Google Scholar 

  • National Committee for Clinical Laboratory Standards (NCCLS) (1997) Reference method for broth dilution antifungal susceptibility testing of yeast. Approved standard M27-A. 940 West Valley Road, Suite 1400, Wayne, Pennsylvania, USA

    Google Scholar 

  • National Committee for Clinical Laboratory Standards (NCCLS) (2002) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved standard M38-A. 940 West Valley Road, Suite 1400, Wayne, Pennsylvania, USA

    Google Scholar 

  • Nowosielski M, Hoffmann M, Wyrwicz LS et al (2011) Detailed mechanism of squalene epoxidase inhibition by terbinafine. J Chem Inf Model 51(2):455–462

    Article  CAS  PubMed  Google Scholar 

  • Oliveira AH (2015) Avaliação das atividades anti-inflamatória e Antifúngica dos extratos de Vismia guianensis (Aubl.) Choisy na infecção induzida por Sporothrix schenckii. Tese doutoral em Biociências e Biotecnologia Aplicadas à Farmácia, da Faculdade de Ciências Farmacêuticas de Araraquara, UNESP

    Google Scholar 

  • Otang WM, Grierson DS, Ndip RN (2012) Phytochemical studies and antioxidant activity of two South African medicinal plants traditionally used for the management of opportunistic fungal infections in HIV/AIDS patients. BMC Complement Altern Med 12:43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ottonelli CD, Magagnin CM, Castrillón MR et al (2014) Antifungal susceptibilities and identification of species of the Sporothrix schenckii complex isolated in Brazil. Med Mycol 52(1):56–64

    Google Scholar 

  • Pachl J, Svoboda P, Jacobs F, Vandewoude K, van der Hoven B, Spronk P et al (2006) A randomized, blinded, multicenter trial of lipid-associated amphotericin B alone versus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis. Clin Infect Dis 42(10):1404–1413

    Article  CAS  PubMed  Google Scholar 

  • Papahadjopoulos D, Wilschut J (1979) Calcium induced fusion of phospholipids vehicles. Nature 281:690–692

    Article  PubMed  Google Scholar 

  • Patel PA, Patravale VB (2011) AmbiOnp: solid lipid nanoparticles of amphotericin B for oral administration. J Biomed Nanotechnol 7(5):632–639

    Article  CAS  PubMed  Google Scholar 

  • Pereira SA, Schubach TM, Gremião ID et al (2009) Aspectos terapêuticos da esporotricose felina. Acta Sci Vet 37(4):331–341

    Google Scholar 

  • Pereira SA, Passos SR, Silva JN et al (2010) Response to azolic antifungal agents for treating feline sporotrichosis. Vet Rec 166(10):290–294

    Article  CAS  PubMed  Google Scholar 

  • Pereira SA, Gremião ID, Kitada AA et al (2014) The epidemiological scenario of feline sporotrichosis in Rio de Janeiro, State of Rio de Janeiro, Brazil. Rev Soc Bras Med Trop 47(3):392–393

    Article  PubMed  Google Scholar 

  • Perlin DS (2004) Amphotericin B cochleates: a vehicle for oral delivery. Curr Opin Investig Drugs 5(2):198–201

    CAS  PubMed  Google Scholar 

  • Portuondo DL, Ferreira LS, Urbaczek AC et al (2015a) Adjuvants and delivery systems for antifungal vaccines: current state and future developments. Med Mycol 53(1):69–89

    Article  PubMed  Google Scholar 

  • Portuondo DL (2015b) Desenvolvimento e avaliação de candidatos vacinais a base de proteínas da superfície celular de Sporothrix schenckii. Tese doutoral em Biociências e Biotecnologia Aplicadas à Farmácia, da Faculdade de Ciências Farmacêuticas de Araraquara, UNESP

    Google Scholar 

  • Price RR, Patchan M (1991) Controlled release from cylindrical microstructures. J Microencapsul 8:301–306

    Article  CAS  PubMed  Google Scholar 

  • Qiao J, Li R, Ding Y, Fang H (2010) Photodynamic therapy in the treatment of superficial mycoses: an evidence based evaluation. Mycopathologia 170:339–343

    Article  PubMed  Google Scholar 

  • Rai M, Mares D (2003) Plant-derived antimycotics. Food Products Press, New York, p 587

    Google Scholar 

  • Rao R, Squillante E, Kim KH (2007) Lipid-based cochleates: a promising formulation platform for oral and parenteral delivery of therapeutic agents. Crit Rev Ther Drug Carrier Syst 24(1):41–61

    Article  CAS  PubMed  Google Scholar 

  • Reis EG, Gremião ID, Kitada AA et al (2012a) Potassium iodide capsule treatment of feline sporotrichosis. J Feline Med Surg 14(6):399–404

    Article  PubMed  Google Scholar 

  • Reis EG, Kitada AA, Carvalho BW et al (2012b). Treatment of refractory feline sporotrichosis with potassium iodide capsule. XVIII International Congress for Tropical Medicine and Malaria, Rio de Janeiro, Brazil

    Google Scholar 

  • Rex JH, Nelson PW, Paetznick VL et al (1998) Optimising the correlation between results of testing in vitro and therapeutic outcome in vivo for fluconazole by testing critical isolates in a murine model of invasive candidiasis. J Clin Microbiol 42:129–134

    CAS  Google Scholar 

  • Rippon JW (1988) Medical mycology: the pathogenic fungi and the pathogenic actinomycetes, 3rd edn. WB Saunders, Philadelphia, pp 325–352

    Google Scholar 

  • Rocha RFDB (2014) Tratamento da esporotricose felina refratária com a associação de iodeto de potássio e itraconazol oral. Dissertação apresentada ao Curso de pós-graduação em Pesquisa Clínica em Doenças Infecciosas do Instituto de Pesquisa Clínica Evandro Chagas para obtenção do grau de Mestre em Ciências

    Google Scholar 

  • Rodrigues AM, de Hoog GS, de Cássia Pires D et al (2014) Genetic diversity and antifungal susceptibility profiles in causative agents of sporotrichosis. BMC Infect Dis 14:219

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rojas R, Bustamante B, Bauer J et al (2003) Antimicrobial activity of selected Peruvian medicinal plants. J Ethnopharmacol 88(2-3):199–204

    Article  PubMed  Google Scholar 

  • Rosa AC, Scroferneker ML, Vettorato R et al (2005) Epidemiology of sporotrichosis: a study of 304 cases in Brazil. J Am Acad Dermatol 52:451–459

    Article  PubMed  Google Scholar 

  • Rosser E, Dunstan R (2006) Sporotrichosis. In: Greene CE (ed) Infectious diseases in dog and cat, 3rd edn. Saunders Elsevier, St. Louis, MO, pp 608–612

    Google Scholar 

  • Rossi CN, Odaguiri J, Larsson CE (2013) Retrospective assessment of the treatment of sporotrichosis in cats and dogs using itraconazole. Acta Sci Vet 41:1112

    Google Scholar 

  • Saag MS, Dismukes WE (1988) Azole antifungal agents: emphasis on new triazoles. Antimicrob Agents Chemother 32(1):1–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santangelo R, Paderu P, Delmas G et al (2000) Efficacy of oral cochleate-amphotericin B in a mouse model of systemic candidiasis. Antimicrob Agents Chemother 44(9):2356–2360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scheinfeld N (2007) A review of the new antifungals: posaconazole, micafungin, and anidulafungin. J Drugs Dermatol 6:1249–1251

    PubMed  Google Scholar 

  • Schubach TM, Schubach A, Okamoto T et al (2004) Evaluation of an epidemic of sporotrichosis in cats: 347 cases (1998-2001). J Am Vet Med Assoc 224(10):1623–1629

    Article  PubMed  Google Scholar 

  • Schubach TM, Schubach A, Okamoto T et al (2006) Canine sporotrichosis in Rio de Janeiro, Brazil: clinical presentation, laboratory diagnosis and therapeutic response in 44 cases (1998-2003). Med Mycol 44(1):87–92

    Article  PubMed  Google Scholar 

  • Schubach TM, Menezes RC, Wanke B (2012) Sporotrichosis. In: Greene CE (ed) Infectious diseases of the dog and cat, 4th edn. Saunders Elsevier, Philadelphia, pp 645–650

    Google Scholar 

  • Seibold M, Tintelnot K (2003) Susceptibility testing of fungi - current status and open questions. Prog Drug Research 191–241

    Google Scholar 

  • Silveira CP, Torres-Rodriguez JM, Alvarado-Ramirez E et al (2009) MICs and minimum fungicidal concentrations of amphotericin B, itraconazole, posaconazole and terbinafine in Sporothrix schenckii. J Med Microbiol 58(Pt 12):1607–1610

    Article  CAS  PubMed  Google Scholar 

  • Singh DN, Verma N, Raghuwanshi S et al (2008) Antifungal activity of Agapanthus africanus extractives. Fitoterapia 79(4):298–300

    Article  CAS  PubMed  Google Scholar 

  • Steinbach WJ, Stevens DA (2003) Review of newer antifungal and immunomodulatory strategies for invasive aspergillosis. Clin Infect Dis 37(Suppl 3):S157–S187

    Article  CAS  PubMed  Google Scholar 

  • Sterling JB, Heymann WR (2000) Potassium iodide in dermatology: a 19th century drug for the 21st century-uses, pharmacology, adverse effects, and contraindications. J Am Acad Dermatol 43:691–697

    Article  CAS  PubMed  Google Scholar 

  • Stevens DA (1998) Combination immunotherapy and antifungal chemotherapy. Clin Infect Dis 26(6):1266–1269

    Article  CAS  PubMed  Google Scholar 

  • St-Germain G (2001) Impact of endpoint definition on the outcome of antifungal susceptibility tests with Candida species: 24- versus 48-h incubation and 50 versus 80% reduction in growth. Mycoses 44:37–45

    Article  CAS  PubMed  Google Scholar 

  • Stopiglia CD, da Rocha VD, de Carvalho MG et al (2011) Antifungal activity of Pterocaulon species (Asteraceae) against Sporothrix schenckii. J Mycol Med 21(3):169–172

    CAS  PubMed  Google Scholar 

  • Svetaz L, Zuljan F, Derita M et al (2010) Value of the ethnomedical information for the discovery of plants with antifungal properties. A survey among seven Latin American countries. J Ethnopharmacol 127:137–158

    Article  PubMed  Google Scholar 

  • Syed UM, Woo AF, Plakogiannis F et al (2008) Cochleates bridged by drug molecules. Int J Pharm 363(1–2):118–125

    Article  CAS  PubMed  Google Scholar 

  • Toledo MS, Tagliari L, Suzuki E et al (2010) Effect of anti-glycosphingolipid monoclonal antibodies in pathogenic fungal growth and differentiation. Characterization of monoclonal antibody MEST-3 directed to Manpalpha1– > 3Manpalpha1– > 2IPC. BMC Microbiol 10:47

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Torrado JJ, Espada R, Ballesteros MP et al (2008) Amphotericin B formulations and drug targeting. J Pharm Sci 97(7):2405–2425

    Article  CAS  PubMed  Google Scholar 

  • Torres-Mendoza BM, Vazquez-Valls E, Gonzalez-Mendoza A (1997) Effect of potassium iodide on the immune response in the sporotrichosis. Rev Iberoam Micol 14:98–100

    CAS  PubMed  Google Scholar 

  • Valle ACF, Gutierrez-Galhardo MC (2012) Esporotricose. In: Tavares W, Marinho LAC (eds) Rotinas de diagnóstico e tratamento das doenças infecciosas e parasitárias, 3rd edn. Atheneu, São Paulo, pp 332–336

    Google Scholar 

  • Van de Ven H, Paulussen C, Feijens PB et al (2012) PLGA nanoparticles and nanosuspensions with amphotericin B: potent in vitro and in vivo alternatives to Fungizone and Am Bisome. J Control Release 161(3):795–803

    Article  PubMed  CAS  Google Scholar 

  • Warrilow AG, Parker JE, Kelly DE et al (2013) Azole affinity of sterol 14α-demethylase (CYP51) enzymes from Candida albicans and Homo sapiens. Antimicrob Agents Chemother 57(3):1352–1360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wen C, Guo W, Chen X (2014) Purification and identification of a novel antifungal protein secreted by Penicillium citrinum from the Southwest Indian Ocean. J Microbiol Biotechnol 24(10):1337–1345

    Article  CAS  PubMed  Google Scholar 

  • Whittemore JC, Webb CB (2007) Successful treatment of nasal sporotrichosis in a dog. Can Vet J 48(4):411–414

    PubMed Central  PubMed  Google Scholar 

  • Wong-Beringer A, Jacobs RA, Guglielmo BJ (1998) Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis 27:603–618

    Article  CAS  PubMed  Google Scholar 

  • Woolley DW (1944) Some biological effects produced by benzimidazole and their reversal by purines. J Biol Chem 152:225–232

    CAS  Google Scholar 

  • Xander P, Vigna AF, Feitosa LDS et al (2007) A surface75-kDa protein with acid phosphatase activity recognized by monoclonal anti-bodies that inhibit Paracoccidioides brasiliensis growth. Microb Infect 9:1484–1492

    Article  CAS  Google Scholar 

  • Zarai Z, Kadri A, Ben Chobba I et al (2011) The in-vitro evaluation of antibacterial, antifungal and cytotoxic properties of Marrubium vulgare  L essential oil grown in Tunisia. Lipids Health Dis 10:161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zarif L, Mannino R (2000) Cochleates: new lipid based vehicles for gene deliveries, cancer gene therapy, vol 465, Advances in experimental medicine and biology. Kluwer, New York, pp 83–94

    Google Scholar 

  • Zarif L, Graybill JR, Perlin D et al (2000) Antifungal activity of amphotericin B cochleates against Candida albicans infection in a mouse model. Antimicrob Agents Chemother 44(6):1463–1469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang HB, Jia CK, Xi HJ et al (2011) Specific inhibition of Candida albicans growth in vitro by antibodies from experimental Candida keratitis mice. Exp Eye Res 93:50–58

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Zhang Y, Qin J et al (2013) Antifungal metabolites produced by Chaetomium globosum No.04, an endophytic fungus isolated from Ginkgo biloba. Indian J Microbiol 53(2):175–180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zotchev SB (2003) Polyene macrolide antibiotics and their applications in human therapy. Curr Med Chem 10(3):211–223

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Batista-Duharte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Batista-Duharte, A., Pereira, S.A., Freitas, D.F.S., Fuentes, D.P., Gutierrez-Galhardo, M.C., Carlos, I.Z. (2015). Therapeutic and Prophylactic Tools for Sporotrichosis: Current Strategies and Future Tendencies. In: Zeppone Carlos, I. (eds) Sporotrichosis. Springer, Cham. https://doi.org/10.1007/978-3-319-11912-0_9

Download citation

Publish with us

Policies and ethics