Skip to main content

Landslide Susceptibility Analysis and Mapping Using Statistical Multivariate Techniques: Pahuatlán, Puebla, Mexico

  • Chapter
Recent Advances in Modeling Landslides and Debris Flows

Abstract

Susceptibility analyses are frequently based on the idea that landslides occur in the same areas where they have taken place previously, and also in areas under similar conditions. Based on that assumption, four different statistical techniques—Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Logistic Regression (LRA), and Neural Networks (NN) —have been applied for the municipality of Pahuatlán, Puebla, México. The base for the analysis was a geomorphological landslide inventory derived from the stereo-interpretation of Very High Resolution (VHR) satellite images.

The quality of each model was controlled by using ROC curves and Cohen’s Kappa coefficient. Also, a temporal validation with a data set of landslides occurred on 2012 was carried out for each model. The resulting analysis showed that the aspect, the slope angle and the lithological unit were the variables with the highest weight associated with the occurrence of landslides in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glade, T., Crozier, M.J.: A review of scale dependency in landslide hazard and risk analysis. In: Glade, T., Anderson, M.G., Crozier, M.J. (eds.) Landslide Hazard and Risk, pp. 75–138. Wiley, Chichester (2005)

    Chapter  Google Scholar 

  2. Guzzetti, F.: Landslide Hazard and Risk Assessment. Ph.D. Thesis, Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität, University of Bonn, Germany, 389 p. (2006), http://hss.ulb.unibonn.de/diss_online/math_nat_fak/2006/guzzetti_fausto/ , http://geomorphology.irpi.cnr.it/Members/fausto/PhD-dissertation

  3. Rossi, M., Guzzetti, F., Reichenbach, P., Mondini, A., Peruccacci, S.: Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 114, 129–142 (2010)

    Article  Google Scholar 

  4. Chung, C.-J.F., Fabbri, A.G.: Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering & Remote Sensing 65(12), 1389–1399 (1999)

    Google Scholar 

  5. Brabb, E.E., Pampeyan, E.H., Bonilla, M.G.: Landslide susceptibility in San Mateo County, California. U.S. Geological Survey Miscellaneous Field Studies Map, MF-360, Scale 1, 62,500 (1978)

    Google Scholar 

  6. Carrara, A.: Considerazioni sulla cartografia applicata alla stabilità dei versanti. Seminario Sottoprogetto Fenomeni Franosi, Bari, 11 p. (March 1978) (in Italian)

    Google Scholar 

  7. van Westen, C.J., Castellanos, E., Kuriakose, S.: Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology 102, 112–131 (2008)

    Article  Google Scholar 

  8. Carrara, A.: A multivariate model for landslide hazard evaluation. Mathematical Geology 15, 403–426 (1983)

    Article  Google Scholar 

  9. Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., Galli, M.: Estimating the quality of landslide susceptibility models. Geomorphology 81, 166–184 (2006)

    Article  Google Scholar 

  10. He, S., Pan, P., Dai, L., Wang, H., Liu, J.: Application of kernel-based Fisher discriminant analysis to map landslide susceptibility in the Qinggan River delta, Three Gorges, China. Geomorphology 171-172, 30–41 (2012)

    Article  Google Scholar 

  11. Yesilnacar, E., Topal, T.: Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology 79, 251–266 (2005)

    Article  Google Scholar 

  12. van Den Eeckhaut, M., Vanwalleghem, T., Poesen, J., Govers, G., Verstraeten, G., Vandekerckhove, L.: Prediction of landslide susceptibility using rare events logistic regression: A case-study in the Flemish Ardennes (Belgium). Geomorphology 76, 392–410 (2006)

    Article  Google Scholar 

  13. Nefeslioglu, H.A., Gokceoglu, C., Sonmez, H.: An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Engineering Geology 97, 171–191 (2008)

    Article  Google Scholar 

  14. Yilmaz, I.: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey). Computers & Geosciences 35, 1125–1138 (2009)

    Article  Google Scholar 

  15. Bai, S.-B., Wang, J., Lü, G.-N., Zhou, P.-G., Hou, S.-S., Xu, S.-N.: GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology 115(1-2), 23–31 (2010)

    Article  Google Scholar 

  16. Das, I., Sahoo, S., van Westen, C., Stein, A., Hack, R.: Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology 114(4), 627–637 (2010)

    Article  Google Scholar 

  17. Nandi, A., Shakoor, A.: A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology 110(10), 11–20 (2010)

    Article  Google Scholar 

  18. Yalcin, A., Reis, S., Aydinoglu, A.C., Yomralioglu, T.: A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. CATENA 85, 274–287 (2011)

    Article  Google Scholar 

  19. Choi, J., Oh, H.-J., Lee, H.-J., Lee, C., Lee, S.: Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Engineering Geology 4, 12–23 (2012)

    Article  Google Scholar 

  20. Schicker, R., Moon, V.: Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale. Geomorphology 161-162, 40–57 (2012)

    Article  Google Scholar 

  21. Xu, C., Xu, X., Dai, F., Saraf, A.: Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China. Computers & Geosciences 46, 317–329 (2012)

    Article  Google Scholar 

  22. Wang, L.-J., Sawada, K., Moriguchi, S.: Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy. Computers & Geosciences 57, 81–92 (2013)

    Article  Google Scholar 

  23. Kanungo, D.P., Arora, M.K., Sarkar, S., Gupta, R.P.: A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology 85, 347–366 (2006)

    Article  Google Scholar 

  24. Melchiorre, C., Matteucci, M., Azzoni, A., Zanchi, A.: Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology 94, 379–400 (2008)

    Article  Google Scholar 

  25. Melchiorre, C., Castellanos-Abella, E.A., van Westen, C.J., Matteucci, M.: Evaluation of prediction capability, robustness, and sensitivity in non-linear landslide susceptibility models, Guantánamo, Cuba. Computers & Geosciences 37, 410–425 (2011)

    Article  Google Scholar 

  26. Kawabata, D., Bandibas, J.: Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN). Geomorphology 113, 97–109 (2009)

    Article  Google Scholar 

  27. Pradhan, B., Lee, S.: Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling & Software 25, 747–759 (2010)

    Article  Google Scholar 

  28. Vahidnia, M., Alesheikh, A., Alimohammadi, A., Hosseinali, F.: A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping. Computers & Geosciences 36, 1101–1114 (2010)

    Article  Google Scholar 

  29. Oh, H.-J., Pradhan, B.: Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Computers & Geosciences 37, 1264–1276 (2011)

    Article  Google Scholar 

  30. Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., Dick, O.: Landslide susceptibility assessment in the Hoa Binh province of Vietnam: A comparison of the Levenberg–Marquardt and Bayesian regularized neural networks. Geomorphology 171-172, 12–29 (2012)

    Article  Google Scholar 

  31. Pradhan, B.: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences 51, 350–365 (2013)

    Article  Google Scholar 

  32. Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., Savage, W.: Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology 102, 85–98 (2008)

    Article  Google Scholar 

  33. Frattini, P., Crosta, G., Carrara, A.: Techniques for evaluating the performance of landslide susceptibility models. Engineering Geology 111, 62–72 (2010)

    Article  Google Scholar 

  34. Sánchez-Rojas, L.E., De la Callejera-Moctezuma, A.E.: Carta Geológico-Minera Pahuatlán F14-D73. Servicio Geológico Mexicano, Escala 1, 50 000 (2004) (in Spanish)

    Google Scholar 

  35. Oliva Aguilar, V.R., Garza Merodio, G.G., Alcántara Ayala, I.: Configuration and temporal dimension of vulnerability: spaces and disasters in the Sierra Norte de Puebla. Investigaciones Geográficas, boletín del Instituto de Geografía. UNAM 75, 61–74 (2011)

    Google Scholar 

  36. Alcántara Ayala, I.: Hazard assessment of rain¬fall induced landsliding in Mexico. Geomorphology 61, 19–40 (2004)

    Article  Google Scholar 

  37. Ibsen, M.-L., Brunsden, D.: The nature, use and problems of historical archives for the temporal occurrence of landslides, with specific reference to the south coast of Britain, Ventnor, Isle of Wight. Geomorphology 15, 241–258 (1996)

    Article  Google Scholar 

  38. Lang, A., Moya, J., Corominas, J., Schrott, L., Dikau, R.: Classic and new dating methods for assessing the temporal occurrence of mass movements. Geomorphology 30(1-2), 33–52 (1999)

    Article  Google Scholar 

  39. Glade, T.: Landslide hazard assessment and historical landslide data - an inseparable couple? In: Glade, T., Frances, F., Albini, P. (eds.) The Use of Historical Data in Natural Hazard Assessments. Advances in Natural and Technological Hazards Research, vol. 17, pp. 153–168. Springer, Berlin (2001)

    Chapter  Google Scholar 

  40. Marchesini, I., Rossi, M., Alvioli, M., Santangelo, M., Cardinali, M., Reichenbach, P., Ardizzone, F., Fiorucci, F., Balducci, V., Mondini, A., Guzzetti, F.: WPS tools to support geological and geomorphological mapping. In: HEIG-VD: Open Conference Systems, OGRS 2012 (2012)

    Google Scholar 

  41. Loaeza García, J.P., Zárate Barradas, R.G.: Carta Geológico-Minera Huauchinango F14-D83. Servicio Geológico Mexicano, Escala 1, 50 000 (2005)

    Google Scholar 

  42. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2013), http://www.R-project.org

  43. Ardizzone, F., Cardinali, M., Carrara, A., Guzzetti, F., Reichenbach, P.: Uncertainty and errors in landslide mapping and landslide hazard assessment. Natural Hazards and Earth System Sciences 2(1-2), 3–14 (2002)

    Article  Google Scholar 

  44. Petschko, H., Bell, R., Glade, T., Brenning, A.: Landslide susceptibility modeling with generalized additive models – facing the heterogeneity of large regions. In: Eberhardt, E., Froese, C., Turner, A.K., Leroueil, S. (eds.) Landslides and Engineered Slopes: Protecting Society through Improved Understanding, pp. 769–775. Taylor & Francis, Banff (2012)

    Google Scholar 

  45. Gorsevski, P., Gessler, P., Boll, J., Elliot, W., Foltz, R.: Spatially and temporally distributed modeling of landslide susceptibility. Geomorphology 80, 178–198 (2006)

    Article  Google Scholar 

  46. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)

    Article  Google Scholar 

  47. Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Murillo-García, F.G., Alcántara-Ayala, I. (2015). Landslide Susceptibility Analysis and Mapping Using Statistical Multivariate Techniques: Pahuatlán, Puebla, Mexico. In: Wu, W. (eds) Recent Advances in Modeling Landslides and Debris Flows. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-11053-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11053-0_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11052-3

  • Online ISBN: 978-3-319-11053-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics