Skip to main content

Trichoderma Transformation Methods

  • Chapter
  • First Online:
Genetic Transformation Systems in Fungi, Volume 1

Abstract

Trichoderma includes a huge variety of fungal species with an increasing interest from several points of view. Many of their species produce primary or secondary metabolites with importance in pharmaceutical industry or in the biocontrol of significant phytopathogenic fungi (Cardoza et al., Curr Genet 34:50–59, 2005; Sivasithamparam and Ghisalberti, Trichoderma and Gliocladium, London, pp 139–191). Other Trichoderma species produce enzymes with a remarkable industrial importance and even other strains from Trichoderma brevicompactum (Tijerino et al., Fungal Genet Biol 48:285–296, 2011a, Toxins (Basel) 3:1220–1232, 2011b) or Trichoderma longibrachiatum (Alanio et al., Clin Infect Dis 46:e116–118, 2008) have potential pathogenic activity against plants and animals, including human beings, respectively. The practical applications of this genus have resulted in an increasing interest in the development of efficient transformation procedures, in order to select transgenic strains with valuable phenotypes. These procedures should be essential tools to characterize the physiological roles of the increasing number of genes available as a result of the fungal genomic projects (http://genome.jgi-psf.org/programs/fungi) (Grigoriev et al., Nucleic Acids Res 40:D26–32, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alanio A, Brethon B, Feuilhade de Chauvin M, Kerviler E, Leblanc T, Lacorix C, Baruchel A, Menotti J (2008) Invasive pulmonary infection due to Trichoderma longibrachiatum mimicking invasive aspergillosis in a neutropenic patient successfully treated with voriconazole combined with caspofungin. Clin Infect Dis 46: e116–e118

    Article  PubMed  CAS  Google Scholar 

  • Cardoza RE, Moralejo FJ, Gutiérrez S, Casqueiro J, Fierro F, Martín JF (1998) Characterization and nitrogen source regulation at the transcriptional level of the gdhA gene of Aspergillus awamori encoding an NADP-dependent glutamate dehydrogenase. Curr Genet 34:50–59

    Article  PubMed  CAS  Google Scholar 

  • Cardoza RE, Hermosa MR, Vizcaíno JA, Sanz L, Monte E, Gutiérrez S (2005) Secondary metabolites produced by Trichoderma and their importance in the biocontrol process. In: Mellado E, Barredo JL (eds) Microorganisms for industrial enzymes and biocontrol. Research Signpost, pp 1–22. ISBN: 81-308-0040-3

    Google Scholar 

  • Cardoza RE, Vizcaíno JA, Hermosa R, Monte E, Gutiérrez S (2006) A comparison of the phenotypic and genetic stability of recombinant Trichoderma spp. generated by protoplast- and Agrobacterium-mediated transformation. J Microbiol 44:383–395

    PubMed  CAS  Google Scholar 

  • Cardoza RE, Hermosa MR, Vizcaíno JA, González FJ, Llobell A, Monte E, Gutiérrez S (2007) Partial silencing of a hydroxy-methylglutaryl-CoA reductase encoding gene in Trichoderma harzianum CECT 2413 results in a lower level of resistance to lovastatin and a lower antifungal activity. Fungal Genet Biol 44: 269–283

    Article  PubMed  CAS  Google Scholar 

  • De Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    Article  PubMed  Google Scholar 

  • Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm RA, Otillar R, Poliakov A, Ratnere I, Riley R, Smirnova T, Rokhsar D, Dubchak I (2012) The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res 40:D26–D32

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gruber F, Visser J, Kubicek CP, de Graaff LH (1990) The development of a heterologous transformation system for the cellulolytic fungus Trichoderma reesei based on a pyrG-negative mutant strain. Curr Genet 18: 71–76

    Article  PubMed  CAS  Google Scholar 

  • Gruber F, Bicker W, Oskolkova OV, Tschachler E, Bochkov VN (2012) A simplified procedure for semi-targeted lipidomic analysis of oxidized phosphatidylcholines induced by UVA irradiation. J Lipid Res 53:1232–1242

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guangtao Z, Seiboth B, Wen C, Yaohua Z, Xian L, Wang T (2010) A novel carbon source-dependent genetic transformation system for the versatile cell factory Hypocrea jecorina (anamorph Trichoderma reesei). FEMS Microbiol Lett 303:26–32

    Article  PubMed  Google Scholar 

  • Hooykas PJJ, Roobol C, Schilperoort RA (1979) Regulation of the transfer of Ti-plasmids of Agrobacterium tumefaciens. J Gen Microbiol 110: 99–109

    Article  Google Scholar 

  • Lorito M, Hayes CK, Di Pietro A, Harman GE (1993) Biolistic transformation of Trichoderma harzianum and Gliocladium virens using plasmid and genomic DNA. Curr Genet 24:349–356

    Article  PubMed  CAS  Google Scholar 

  • Mach RL, Schindler M, Kubicek CP (1994) Transformation of Trichoderma reesei based on hygromycin B resistance using homologous expression signals. Curr Genet 25:567–570

    Article  PubMed  CAS  Google Scholar 

  • Magaña-Ortíz D, Coconi-Linares N, Ortíz-Vazquez E, Fernández F, Loske AM, Gómez-Lim MA (2013) A novel and highly efficient method for genetic transformation of fungi employing shock waves. Fungal Genet Biol 56:9–16

    Article  PubMed  Google Scholar 

  • Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Hermosa R, Monte E, Gutiérrez S (2012) Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defense-related genes. Appl Environ Microbiol 78:4856–4868

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Collado IG, Hermosa R, Monte E, Gutiérrez S (2013) Relevance of trichothecenes in fungal physiology: disruption of tri5 in Trichoderma arundinaceum. Fungal Genet Biol 53:22–33

    Article  PubMed  CAS  Google Scholar 

  • Mozo T, Hooykaas PJ (1991) Electroporation of megaplasmids into Agrobacterium. Plant Mol Biol 16: 917–918

    Article  PubMed  CAS  Google Scholar 

  • Penttila M, Nevalainen H, Ratto M, Salminen E, Knowles J (1987) A versatile transformation system for the cellulotytic filamentous fungus Trichoderma reesei. Gene 61:155–164

    Article  PubMed  CAS  Google Scholar 

  • Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CAMJJ (1987) Transformation of Aspergillus based on hygromycin B resistance marker from Escherichia coli. Gene 56:117–124

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Torres P, González R, Pérez-González JA, Gozález-Candelas L, Ramón D (1994) Development of a transformation system for Trichoderma longibrachiatum and its use for constructing multicopy transformants for the egl1 gene. Appl Microbiol Biotechnol 41:440–446

    PubMed  Google Scholar 

  • Schuster A, Bruno KS, Collett JR, Baker SE, Selboth B, Kubicek CP, Schmoll M (2012) A versatile toolkit for high throughput functional genomics with Trichoderma reesei. Biotechnol Biofuels 5:1

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sivan A, Stasz TE, Hemmat M, Hayes CK, Harman GE (1992) Transformation of Trichoderma spp. with plasmids conferring hygromycin B resistance. Mycologia 84:687–694

    Article  Google Scholar 

  • Sivasithamparam K, Ghisalberti EL (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Harman GE, Kubicek CP (eds) Trichoderma and gliocladium, vol 1. Taylor and Francis, London, pp 139–191

    Google Scholar 

  • Te’o VS, Bergquist PL, Nevalainen KM (2002) Biolisitic transformation of Trichoderma reesei using the Bio-Rad seven barrels hepta adaptor system. J Microbiol Methods 51:393–399

    Article  PubMed  Google Scholar 

  • Tijerino A, Cardoza RE, Moraga J, Malmierca MG, Vicente F, Aleu J, Collado IG, Gutiérrez S, Monte E, Hermosa R (2011a) Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genet Biol 48:285–296

    Article  PubMed  CAS  Google Scholar 

  • Tijerino A, Hermosa R, Cardoza RE, Moraga J, Malmierca MG, Aleu J, Collado IG, Monte E, Gutierrez S (2011b) Overexpression of the Trichoderma brevicompactum tri5 gene: effect on the expression of the trichodermin biosynthetic genes and on tomato seedlings. Toxins (Basel) 3:1220–1232

    Article  CAS  Google Scholar 

  • Yang L, Yang Q, Sun K, Tian Y (2011) Agrobacterium tumefaciens of ChiV gene to Trichoderma harzianum. Appl Biochem Biotechnol 163:937–945

    Article  PubMed  CAS  Google Scholar 

  • Zhong YH, Xiao LW, Wang TH, Jiang Q (2007) Agrobacterium-mediated transformation (AMT) of Trichoderma reesei as an efficient tool for random insertional mutagenesis. Appl Microbiol Biotechnol 73:1348–1354

    Article  PubMed  CAS  Google Scholar 

  • Zhu T, Wang W, Yang X, Wang K, Zhifeng C (2009) Construction of two gateway vectors for gene expression in fungi. Plasmid 62:128–133

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

 We thank Dr. Elías R. Olivera for constructive comments and critical reading of the manuscript. Dr. Gutiérrez receives grant-aided support from the Ministry of Science and Innovation of Spain (AGL2012-40041-C02-02) and from the Junta de Castilla y León (LE125A12-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Gutiérrez Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Malmierca, M.G., Cardoza, R.E., Gutiérrez, S. (2015). Trichoderma Transformation Methods. In: van den Berg, M., Maruthachalam, K. (eds) Genetic Transformation Systems in Fungi, Volume 1. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-10142-2_3

Download citation

Publish with us

Policies and ethics