Skip to main content
Log in

The role of the sympathetic nervous system in obesity-related hypertension

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Obesity is recognized as a major health problem throughout the world. Excess weight is a major cause of increased blood pressure in most patients with essential hypertension and greatly increases the risk for diabetes, cardiovascular diseases, and end-stage renal disease. Although the mechanisms by which obesity raises blood pressure are not completely understood, increased renal sodium reabsorption, impaired pressure natriuresis, and volume expansion appear to play important roles. Several potential mechanisms have been suggested to contribute to altered kidney function and hypertension in obesity, including activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system, as well as physical compression of the kidneys, especially when visceral obesity is present. Activation of the sympathetic nervous system in obesity may be due, in part, to hyperleptinemia and other factors secreted by adipocytes and the gastrointestinal tract, activation of the central nervous system melanocortin pathway, and baroreceptor dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Department of Health and Human Services—Centers for Disease Control and Prevention: Overweight and obesity trends among adults. 2008. Available at http://www.cdc.gov/nccdphp/dnpa/obesity/trend/index.htm. Accessed March 2009.

  2. Wilson PWF, D’Agostino RB, Sullivan L, et al.: Overweight and obesity as determinants of cardiovascular risk—the Framingham experience. Arch Intern Med 2002, 162:1867–1872.

    Article  PubMed  Google Scholar 

  3. Hall JE, Crook ED, Jones DW, et al.: Mechanisms of obesity-associated cardiovascular and renal disease. Am J Med Sci 2002, 324:127–137.

    Article  PubMed  Google Scholar 

  4. Wannamethee SG, Shaper AG: Weight change and duration of overweight and obesity in the incidence of type 2 diabetes. Diabetes Care 1999, 22:1266–1272.

    Article  PubMed  CAS  Google Scholar 

  5. Davy KP, Hall JE: Obesity and hypertension: two epidemics or one? Am J Physiol Regul Integr Comp Physiol 2004, 286:R803–R813.

    PubMed  CAS  Google Scholar 

  6. Davy KP, Orr JS: Sympathetic nervous system behavior in human obesity. Neurosci Biobehav Rev 2009, 33:116–124.

    Article  PubMed  Google Scholar 

  7. Alexander J, Dustan HP, Sims EAH, et al.: Report of the Hypertension Task Force. US Department of Health, Education, and Welfare Publication No. 70-1631 (NIH), Washington, DC: US Government Printing Office; 1979:61–77.

    Google Scholar 

  8. Jones DW, Kim JS, Andrew ME, et al.: Body mass index and blood pressures in Korean men and women: the Korean National Blood Pressure Survey. J Hypertens 1994, 12:1433–1437.

    Article  PubMed  CAS  Google Scholar 

  9. Neter JE, Stam BE, Kok FL, et al.: Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension 2003, 42:878–884.

    Article  PubMed  CAS  Google Scholar 

  10. Guyton AC: The surprising kidney-fluid mechanism for pressure control—its infinite gain! Hypertension 1990, 16:725–730.

    PubMed  CAS  Google Scholar 

  11. Hall JE: The kidney, hypertension, and obesity. Hypertension 2003, 41:625–633.

    Article  PubMed  CAS  Google Scholar 

  12. Hall JE, Brands, MW, Hildebrandt DA, et al.: Role of sympathetic nervous system and neuropeptides in obesity hypertension. Braz J Med Biol Res 2000, 33:605–618.

    Article  PubMed  CAS  Google Scholar 

  13. Wofford MR, Anderson DC, Brown CA, et al.: Antihypertensive effect of alpha and beta adrenergic blockade in obese and lean hypertensive subjects. Am J Hypertens 2001, 14:694–698.

    Article  PubMed  CAS  Google Scholar 

  14. Kassab S, Kato T, Wilkins C, et al.: Renal denervation attenuates the sodium retention and hypertension associated with obesity. Hypertension 1995, 25:893–897.

    PubMed  CAS  Google Scholar 

  15. Straznicky NE, Eikelis N, Lambert EA, et al.: Mediators of sympathetic activation in metabolic syndrome obesity. Curr Hypertens Rep 2008, 10:440–447.

    Article  PubMed  CAS  Google Scholar 

  16. Grassi G, Dell’Oro R, Facchini A, et al.: Effect of central and peripheral obesity body fat distribution on sympathetic and baroreflex function in obese normotensives. J Hypertens 2004, 22:2363–2369.

    Article  PubMed  CAS  Google Scholar 

  17. Schwartz MW, Woods SC, Porte D Jr, et al.: Central nervous system control of food intake. Nature 2000, 404:661–671.

    PubMed  CAS  Google Scholar 

  18. Correia ML, Rahmouni K: Role of leptin in the cardiovascular and endocrine complications of metabolic syndrome. Diabetes Obes Metab 2006, 8:603–610.

    Article  PubMed  CAS  Google Scholar 

  19. Rahmouni K, Haynes WG, Morgan DA, et al.: Intracellular mechanisms involved in leptin regulation of sympathetic outflow. Hypertension 2003, 41:763–767.

    Article  PubMed  CAS  Google Scholar 

  20. Kimura K, Tsuda K, Baba A, et al.: Involvement of nitric oxide in endothelium-dependent arterial relaxation by leptin. Biochem Biophys Res Commun 2000, 273:745–749.

    Article  PubMed  CAS  Google Scholar 

  21. Carlyle M, Jones OB, Kuo JJ, et al.: Chronic cardiovascular and renal actions of leptin—role of adrenergic activity. Hypertension 2002, 39:496–501.

    Article  PubMed  CAS  Google Scholar 

  22. Kuo JJ, Jones OB, Hall JE: Inhibition of NO synthesis enhances chronic cardiovascular and renal actions of leptin. Hypertension 2001, 37:670–676.

    PubMed  CAS  Google Scholar 

  23. Ozata M, Ozdemir IC, Licinio J: Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metab 1999, 10:3686–3695.

    Article  Google Scholar 

  24. Haynes WG, Morgan DA, Djalali A, et al.: Interactions between the melanocortin system and leptin in control of sympathetic nerve traffic. Hypertension 1999, 33:542–547.

    PubMed  CAS  Google Scholar 

  25. da Silva AA, Kuo JJ, Hall JE: Role of hypothalamic melanocortin 3/4-receptors in mediating chronic cardiovascular, renal, and metabolic actions of leptin. Hypertension 2004, 43:1312–1317.

    Article  PubMed  CAS  Google Scholar 

  26. Tallam LS, Stec DE, Willis MA, et al.: Melanocortin-4 receptor-deficient mice are not hypertensive or salt-sensitive despite obesity, hyperinsulinemia, and hyperleptinemia. Hypertension 2005, 46:326–332.

    Article  PubMed  CAS  Google Scholar 

  27. Tallam LS, da Silva AA, Hall JE: Melanocortin-4 receptor mediates chronic cardiovascular and metabolic actions of leptin. Hypertension 2006, 48:58–64.

    Article  PubMed  CAS  Google Scholar 

  28. Greenfield JR, Miller JW, Keogh JM, et al.: Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med 2009, 360:44–52.

    Article  PubMed  CAS  Google Scholar 

  29. da Silva AA, do Carmo JM, Kanyicska B, et al.: Endogenous melanocortin system activity contributes to the elevated arterial pressure in spontaneously hypertensive rats. Hypertension 2008, 51:884–890.

    Article  PubMed  CAS  Google Scholar 

  30. Wang ZV, Scherer PE: Adiponectin, cardiovascular function, and hypertension. Hypertension 2008, 51:8–14.

    Article  PubMed  CAS  Google Scholar 

  31. Pajvani UB, Hawkins M, Combs TP, et al.: Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem 2004, 279:12152–12162.

    Article  PubMed  CAS  Google Scholar 

  32. Ohashi K, Kihara S, Ouchi N, et al.: Adiponectin replenishment ameliorates obesity-related hypertension. Hypertension 2006, 47:1108–1116.

    Article  PubMed  CAS  Google Scholar 

  33. Ouchi N, Ohishi M, Kihara S, et al.: Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension 2003, 42:231–234.

    Article  PubMed  CAS  Google Scholar 

  34. Tanida M, Shen J, Horii Y, et al.: Effects of adiponectin on the renal sympathetic nerve activity and blood pressure in rats. Exp Biol Med 2007, 232:390–397.

    CAS  Google Scholar 

  35. Lin Y, Matsumura K, Fukuhara M, et al.: Ghrelin acts at the nucleus of the solitary tract to decrease arterial pressure in rats. Hypertension 2004, 43:977–982.

    Article  PubMed  CAS  Google Scholar 

  36. Matsumura K, Tsuchihashi T, Fujii K, et al.: Central ghrelin regulates sympathetic activity in conscious rabbits. Hypertension 2002, 40:694–699.

    Article  PubMed  CAS  Google Scholar 

  37. Gil-Campos M, Aguilera CM, Cañete R, et al.: Ghrelin: a hormone regulating food intake and energy homeostasis. Br J Nutr 2006, 96:201–226.

    Article  PubMed  CAS  Google Scholar 

  38. Xu X, Jhun BS, Ha CH, et al.: Molecular mechanisms of ghrelin-mediated endothelial nitric oxide synthase activation. Endocrinology 2008, 149:4183–4192.

    Article  PubMed  CAS  Google Scholar 

  39. Hall JE, Summers RL, Brands MW, et al.: Resistance to metabolic actions of insulin and its role in hypertension. Am J Hypertens 1994, 7:772–788.

    PubMed  CAS  Google Scholar 

  40. Liu J, da Silva AA, Tallam LS, et al.: Chronic central nervous system hyperinsulinemia and regulation of arterial pressure and food intake. J Hypertens 2006, 24:1391–1395.

    Article  PubMed  CAS  Google Scholar 

  41. Hall JE, Jones DW, Kuo JJ, et al.: Impact of the obesity epidemic on hypertension and renal disease. Curr Hypertens Rep 2003, 5:386–392.

    Article  PubMed  Google Scholar 

  42. Umemura S, Nyui N, Tamura K, et al.: Plasma angiotensinogen concentrations in obese patients. Am J Hypertens 1997, 10:629–633.

    Article  PubMed  CAS  Google Scholar 

  43. Reisin E, Weir MR, Falkner B, et al.: Lisinopril versus hydrochlorothiazide in obese hypertensive patients: a multi-center placebo-controlled trial. Treatment in Obese Patients With Hypertension (TROPHY) Study Group. Hypertension 1997, 30:140–145.

    PubMed  CAS  Google Scholar 

  44. de Paula RB, da Silva AA, Hall JE: Aldosterone antagonism attenuates obesity-induced hypertension and glomerular hyperfiltration. Hypertension 2004, 43:41–47.

    Article  PubMed  CAS  Google Scholar 

  45. Carroll RG, Lohmeier TE, Brown AJ: Chronic angiotensin II infusion decreases renal norepinephrine overflow in the conscious dog. Hypertension 1984, 6:675–681.

    PubMed  CAS  Google Scholar 

  46. Lohmeier TE, Dwyer TM, Hildebrandt DA, et al.: Influence of prolonged baroreflex activation on arterial pressure in angiotensin hypertension. Hypertension 2005, 46:1194–1200.

    Article  PubMed  CAS  Google Scholar 

  47. Lohmeier TE, Lohmeier JR, Haque A, et al.: Baroreflexes prevent neurally induced sodium retention in angiotensin hypertension. Am J Physiol Regul Integr Comp Physiol 2000, 279:R1437–R1448.

    PubMed  CAS  Google Scholar 

  48. Lohmeier TE, Dwyer TM, Irwin ED, et al.: Prolonged activation of the baroreflex abolishes obesity-induced hypertension. Hypertension 2007, 49:1307–1314.

    Article  PubMed  CAS  Google Scholar 

  49. Biaggioni I: Should we target the sympathetic nervous system in the treatment of obesity-associated hypertension? Hypertension 2008, 51:168–171.

    Article  PubMed  CAS  Google Scholar 

  50. Svetkey LP, Stevens VJ, Brantley PJ, et al.: Comparison of strategies for sustaining weight loss: the weight loss maintenance randomized controlled trial. JAMA 2008, 299:1139–1148.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre A. da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, A.A., do Carmo, J., Dubinion, J. et al. The role of the sympathetic nervous system in obesity-related hypertension. Current Science Inc 11, 206–211 (2009). https://doi.org/10.1007/s11906-009-0036-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-009-0036-3

Keywords

Navigation