Skip to main content

Biological Rhythmicity in Subterranean Animals: A Function Risking Extinction?

  • Chapter
  • First Online:
Mechanisms of Circadian Systems in Animals and Their Clinical Relevance

Abstract

In this chapter, we discuss evidence of regression of circadian locomotor activity in exclusively subterranean species (troglobites), having fishes as models, by comparing such findings with observations on related epigean (surface) species, that may also form self-sustained subterranean (troglophilic) populations. These results favor the hypothesis of regression of a function which may have lost its adaptive value for species permanently isolated in hypogean habitats for many generations—regression similar to the reduction of eyes and dark pigmentation, typical of troglobites in general. Recent data on feeding behavior of blind catfish compared to epigean congeners suggest a process of partial regression, affecting locomotion but not feeding, due perhaps to the persistence of regular food availability in the otherwise continuously dark cave environment. Among non-troglobitic subterranean animals, trogloxenes present regular, cyclical movements between hypogean and epigean habitats, whereas troglophiles may move between these habitats, promoting genetic connectivity between surface and subterranean populations, but without following well-defined rhythmic patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Barr TC Jr (1968) Cave ecology and the evolution of troglobites. Evol Biol 2:35–97

    Google Scholar 

  • Biswas J, Ramteke AK (2008) Timed feeding synchronizes circadian rhythm in vertical swimming activity in cave loach, Nemacheilus evezardi. Biol Rhythm Res 39:405–412

    Article  Google Scholar 

  • Boujard T, Leatherland JF (1992) Circadian rhythms and feeding time in fishes. Environ Biol Fish 35:109–131

    Article  Google Scholar 

  • Cambras T, Díez-Noguera A (1988) Changes in motor activity during the development of the circadian rhythm in the rat. J Interdisipl Cycle Res 19:65–74

    Article  Google Scholar 

  • Cavallari N, Frigato E, Vallone D et al (2011) A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception. PLoS Biol 9(9):e1001142. doi:10.1371/journal.pbio.1001142

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • del Castillo AE, Castaño-Meneses G, Dávila-Montes MJ et al (2009) Seasonal distribution and circadian activity in the troglophilic long-footed robber frog, Eleutherodactylus longipes (Anura: Brachycephalidae) at Los Riscos Cave, Queretáro, Mexico: field and laboratory studies. J Cave Karst Stud 71:24–31

    Google Scholar 

  • Erckens W, Martin W (1982a) Exogenous and endogenous control of swimming activity in Astyanax mexicanus (Characidae, Pisces) by direct light response and by a circadian oscillator. I. Analysis of the time-control systems of an epigean river population. Z Naturforsch 37:1253–1265

    Google Scholar 

  • Erckens W, Martin W (1982b) Exogenous and endogenous control of swimming activity in Astyanax mexicanus (Characidae, Pisces) by direct light response and by a circadian oscillator. II. Features of time-controlled behaviour of a cave population and their comparison to an epigean ancestral form. Z Naturforsch 37:1266–1273

    Google Scholar 

  • Erckens W, Weber F (1976) Rudiments of an ability for time measurement in the cavernicolous fish Anoptichthys jordani Hubbs and Innes (Pisces, Characidae). Experientia 32:1297–1299

    Article  PubMed  CAS  Google Scholar 

  • Friedrich M (2013) Biological clocks and visual systems in cave-adapted animals at the dawn of speleogenomics. Integr Comp Biol 53:50–67

    Article  PubMed  CAS  Google Scholar 

  • Granados-Fuentes D, Herzog ED (2013) The clock shop: coupled circadian oscillators. Exp Neurol 243:21–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoenen SM, Marques M (1998) Circadian patterns and migration of Strinatia brevipennis (Orthoptera: Phalangopsidae) inside a cave. Biol Rhythm Res 29:480–487

    Article  Google Scholar 

  • Lavoie KH, Helf KL, Poulson TL (2007) The biology and ecology of North American cave crickets. J Cave Karst Stud 69:114–134

    Google Scholar 

  • Proudlove G (2010) Biodiversity and distribution of the subterranean fishes of the world. In: Trajano E et al (eds) Biology of subterranean fishes. Science Publ., Enfield

    Google Scholar 

  • Purser GJ, Chen WM (2001) The effect of meal size and meal duration on food anticipatory activity in greenback flounder. J Fish Biol 58:188–200

    Article  Google Scholar 

  • Rijnsdorp A, Daan S (1981) Hunting in the kestrel, Falco tinnunculus and the adaptive significance of daily habits. Oecologia 50:391–406

    Article  Google Scholar 

  • Sánchez-Vázquez FJ, Madrid JA et al (1996) Demand feeding and locomotor circadian rhythms in the goldfish, Carassius auratus: dual and independent phasing. Physiol Behav 60:665–674

    Article  PubMed  Google Scholar 

  • Saper CB, Jun Lu J et al (2005) The hypothalamic integrator for circadian rhythms. Trends Neurosci 28:152–157

    Article  PubMed  CAS  Google Scholar 

  • Spieler RE (1992) Feeding-entrained circadian rhythms in fishes. In: Ali MA (ed) Rhythms in fishes. Plenum, New York, pp 137–147

    Chapter  Google Scholar 

  • Strecker U, Hausdorj B, Wilkens W (2012) Parallel speciation in Astyanax cave fish (Teleostei) in Northern Mexico. Mol Phylogenet Evol 62:62–70

    Article  PubMed  Google Scholar 

  • Tosini G, Menaker M (1998) Multioscillatory circadian organization in a vertebrate, Iguana iguana. J Neurosci 18:1105–1114

    PubMed  CAS  Google Scholar 

  • Trajano E (2007) The challenge of estimating the age of subterranean lineages: examples from Brazil. Acta Carsologica 36:191–198

    Google Scholar 

  • Trajano E (2012) Ecological classification of subterranean organisms. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, pp 275–277

    Chapter  Google Scholar 

  • Trajano E, Bichuette ME (2010) Subterranean fishes of Brazil. In: Trajano E, Bichuette ME (eds) Biology of subterranean fishes. Science Publ., Enfield, pp 331–355, color plates

    Chapter  Google Scholar 

  • Trajano E, Menna-Barreto L (1995) Locomotor activity pattern of Brazilian cave catfishes under constant darkness (Siluriformes, Pimelodidae). Biol Rhythm Res 26:341–353

    Article  Google Scholar 

  • Trajano E, Menna-Barreto L (1996) Free-running locomotor activity rhythms in cave-dwelling catfishes, Trichomycterus sp., from Brazil (Teleostei, Siluriformes). Biol Rhythm Res 27:329–335

    Article  Google Scholar 

  • Trajano E, Menna-Barreto L (2000) Locomotor activity rhythms in cave catfishes, genus Taunayia, from eastern Brazil (Teleostei: Siluriformes: Heptapterinae). Biol Rhythm Res 31:469–480

    Article  Google Scholar 

  • Trajano E, Duarte L, Menna-Barreto L (2005) Locomotor activity rhythms in cave fishes from Chapada Diamantina, northeastern Brazil (Teleostei: Siluriformes). Biol Rhythm Res 36:229–236

    Article  Google Scholar 

  • Trajano E, Carvalho MR, Duarte L et al (2009) Comparative study on free-running locomotor circadian rhythms in Brazilian subterranean fishes with different degrees of specialization to the hypogean life (Teleostei: Siluriformes, Characiformes). Biol Rhythm Res 40:477–489

    Article  Google Scholar 

  • Trajano E, Ueno JCH, Menna-Barreto L (2012) Evolution of time control mechanisms in subterranean organisms: cave fish under light-dark cycles (Teleostei: Siluriformes, Characiformes). Biol Rhythm Res 43:191–203

    Article  Google Scholar 

  • Volpato GL, Trajano E (2006) Biological rhythms: the physiology of tropical fishes. In: Val AL, Val VM, Randall DJ (eds) Fish physiology, vol 21. Elsevier, San Diego, pp 101–153

    Chapter  Google Scholar 

  • Wilkens H (1988) Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Pisces). Evol Biol 23:271–367

    Google Scholar 

  • Wilkens H (2010) Genes, modules and the evolution of cave fish. Heredity 105:413–422

    Google Scholar 

Download references

Acknowledgments

We are deeply indebted to Dante Fenolio, author of the cave fish photographs, for the authorization to use these images. ET is partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (fellowship 302956/2010-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Menna-Barreto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Menna-Barreto, L., Trajano, E. (2015). Biological Rhythmicity in Subterranean Animals: A Function Risking Extinction?. In: Aguilar-Roblero, R., Díaz-Muñoz, M., Fanjul-Moles, M. (eds) Mechanisms of Circadian Systems in Animals and Their Clinical Relevance. Springer, Cham. https://doi.org/10.1007/978-3-319-08945-4_4

Download citation

Publish with us

Policies and ethics