Skip to main content

Multi-Dimensional Production Planning Using a Vertical Data Integration Approach

A Contribution to Modular Factory Design

  • Chapter
  • First Online:
Automation, Communication and Cybernetics in Science and Engineering 2013/2014
  • 1337 Accesses

Abstract

Due to the continuously and fast increasing complexity of products and production processes, manufacturing companies have to face more and more challenges in order to survive on a competitive market. Thus, in modern planning scenarios of the manufacturing process, the goal is not only to achieve the most efficient low-cost production, but also to take into account the interests of the customer. Especially the increasing impact of the customer on the market leads to rapidly changing boundary conditions and thus different requirements concerning the production process. As a consequence, the production has to be designed more flexible and adaptive to changing circumstances. In order to reach the desired flexibility, the production as well as the communication management within the factory has to be designed on the basis of a modular planning approach. This requires vertical exchange of information through all levels of the company, from the management layers and the Enterprise Resource Planning (ERP) to the automation and shop floor layers, where the aggregated information is needed to optimize the production. The interconnection of these corporate layers can only be achieved through the use of an information model that serves interoperability between these mostly heterogeneous systems. The processing and visualization of ERP data using an integrative information model enables a continuous optimization of the production systematics. Through the information model, cross-linked data structures of the production monitoring and automation can be connected and thus be integrated and consolidated into a consistent data basis. In the current work, such an information model will be introduced and validated by making use of an optimization algorithm that is carried out through the layout planning phase of a factory. The use-case scenario presented aims for serving a flexible and dynamic optimization of the production structure of a manufacturing enterprise. During the optimization, the algorithm takes into account historical data taken from the ERP level of the company as well as time constraints to design multi-dimensional process chains for multiple manufacturing scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Menrath, M. 2003. Auf dem Weg zur schlanken Fertigung. Von der Wettbewerbsstrategie eines Unternehmens der Luftfahrtindustrie zur Fertigungsstrategie des Standorts. ZWF - Zeitschrift für wirtschaftlichen Fabrikbetrieb 98 (7-8): 343–348.

    Google Scholar 

  2. Frese, E. 2008. Grundlagen der Organisation: Konzept - Prinzipien - Strukturen. 7th ed. Wiesbaden: Gabler.

    Google Scholar 

  3. Reinhart, G., P. Geiger, F. Engelhardt, T. R. Philipp, W. Wahlster, J. Zühlke, J. Schlick, T. Becker, M. Löckelt, B. Pirvu, P. Stephan, S. Hodek, B. Scholz-Reiter, K. Thoben, C. Gorldt, K. A. Hribernik, D. Lappe, and M. Veigt. 2013. Cyber-Physische Produktionssysteme: Produktivitäts- und Flexibilitätssteigerung durch die Vernetzung intelligenter Systeme in der Fabrik. wt Werkstattstechnik online 103 (2): 84–89.

    Google Scholar 

  4. Uhlmann, E., E. Hohwieler, and M. Kraft. 2013. Selbstorganisierende Produktion mit verteilter Intelligenz: Intelligente Werkstücke steuern ihren Weg durch die Fertigung. wt Werkstattstechnik online 103 (2): 114–117.

    Google Scholar 

  5. Schuh, G., A. Kampker, and C. Wesch-Potente. 2011. Condition based factory planning. Production Engineering 5 (1): 89–94.

    Article  Google Scholar 

  6. Anderl, R., and M. Rezaei. 2009. Unterstützung von Concurrent Design und Simultaneous Engineering: Fabrikdatenmanagement im Umfeld der digitalen Fabrik. ZWF - Zeitschrift für wirtschaftlichen Fabrikbetrieb 1–2:22–26.

    Google Scholar 

  7. Wiendahl, H.-P., J. Reichardt, and P. Nyhuis. 2009. Handbuch Fabrikplanung: Konzept, Gestaltung und Umsetzung wandlungsfähiger Produktionsstätten. München: Hanser.

    Book  Google Scholar 

  8. Verlag Deutscher Ingenieuere. 2011. Fabrikplanung - Blatt 1 - Planungsvorgehen.

    Google Scholar 

  9. Schenk, M. 2004. Fabrikplanung und Fabrikbetrieb: Methoden für die wandlungsfähige und vernetzte Fabrik. Berlin: Springer.

    Google Scholar 

  10. Singh, S. P., and R. R. K. Sharma. 2006. A review of different approaches to the facility layout problems. The International Journal of Advanced Manufacturing Technology 30 (5–6): 425–433.

    Article  Google Scholar 

  11. Kampker, A., K. Kreisköther, P. Burggräf, A. Meckelnborg, M. Krunke, S. Jeschke, and M. Hoffmann. 2013. Value-Oriented Layout Planning Using the Virtual Production Intelligence (VPI). POMS 2013 - Twenty Fourth Annual Conference, Denver, Colorado, USA. Production and Operations Management Society.

    Google Scholar 

  12. Fitzgerald, G. 1992. Executive information systems and their development in the U.K.: A research study. International Information Systems 1 (2): 1–35.

    MathSciNet  Google Scholar 

  13. Kemper, H., and B. Henning. 2006. Business Intelligence and Competitive Intelligence: IT-basierte Managementunterstützung und markt-/wettbewerbsorientierte Anwendungen. HMD Praxis der Wirtschaftsinformatik 43 (247): 7–20.

    Google Scholar 

  14. Hänel, T., and C. Felden. 2011. Manufacturing Execution Systems und Operational Business Intelligence: Zur Notwendigkeit einer integrierten Betrachtung: Business Intelligence - Impulse für die Forschung oder Impulse durch die Forschung. Dritter Workshop Business Intelligence (WSBI 11), 7–14.

    Google Scholar 

  15. Eckerson, W. W. 2007. Best practices in operations BI: Converging analytical and operational processes. TDWI Best Practices Report. Renton: TDWI.

    Google Scholar 

  16. MESA. 1997. MES functionalities and MRP to MES data flow possibilities. White paper no. 2. Pittsburgh: MESA International.

    Google Scholar 

  17. Cooper, B. L., H. J. Watson, B. H. Wixom, and D. L. Goodhue. 2000. Data warehousing supports corporate strategy at First American Corporation. MIS Quarterly 24 (4): 547–567.

    Article  Google Scholar 

  18. Meisen, T., P. Meisen, D. Schilberg, and S. Jeschke. 2012. Adaptive information integration: Bridging the semantic gap between numerical simulations. In Enterprise information systems, ed. R. Zhang, J. Zhang, Z. Zhang, J. Filipe, and J. Cordiero. Lecture Notes in Business Information Processing. vol. 102, 51–65. Berlin: Springer.

    Google Scholar 

  19. Reinhard, R., T. Meisen, T. Beer, D. Schilberg, and S. Jeschke. 2011. A Framework Enabling Data Integration for Virtual Production: In Enabling Manufacturing Competitiveness and Economic Sustainability. Proceedings of the 4th International Conference on Changeable, Agile Reconfigurable and Virtual Production (CARV 2011).

    Google Scholar 

  20. Vogel-Heuser, B., G. Kegel, K. Bender, and K. Wucherer. 2009. Global information architecture for industrial automation. atp - Automatisierungstechnische Praxis 51 (1): 108–115.

    Google Scholar 

Download references

Acknowledgements

The present work is supported by the German Research Foundation (Deutsche Forschungsgemeinschaft – DFG) within the Cluster of Excellence “Integrative production technology for high-wage countries” at the RWTH Aachen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoffmann, M., Meisen, T., Schilberg, D., Jeschke, S. (2014). Multi-Dimensional Production Planning Using a Vertical Data Integration Approach. In: Jeschke, S., Isenhardt, I., Hees, F., Henning, K. (eds) Automation, Communication and Cybernetics in Science and Engineering 2013/2014. Springer, Cham. https://doi.org/10.1007/978-3-319-08816-7_68

Download citation

Publish with us

Policies and ethics