Skip to main content

CAM-Like Traits in C3 Plants: Biochemistry and Stomatal Behavior

  • Chapter
  • First Online:
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 76))

Abstract

Although it is generally accepted that Crassulacean Acid Metabolism (CAM) originated from C3 ancestors through a co-option process, this is rarely discussed in terms of specific characteristics and putative mechanisms behind this event. Here we discuss the available data concerning the biochemical and stomatal traits that are present in C3 plants and could have been enrolled in the CAM cycle. In summary, the biochemical machinery of CAM seems to have originated from a potential stress-driven recruitment of key non-photosynthetic enzymes of the C3 background which have entrained circadian rhythm. CAM stomatal behavior could be either a direct consequence of an upregulation of the biochemical machinery or it might require additional changes in the signaling/perception pathways controlling stomatal aperture. Considering that CAM has multiple origins, it is likely that each plant group developed it through different combinations of biochemical/stomatal changes, resulting in various degrees of plasticity of this photosynthetic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araújo WL, Fernie AR, Nunes-Nesi A (2011) Control of stomatal aperture, a renaissance of the old guard. Plant Signal Behav 6:1305–1311

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Aubry S, Brown NJ, Hibberd JM (2011) The role of proteins in C3 plants prior to their recruitment into the C4 pathway. J Exp Bot 62:3049–3059

    Article  PubMed  CAS  Google Scholar 

  • Berry JO, Yerramsetty P, Zielinski AM, Mure CM (2013) Photosynthetic gene expression in higher plants. Photosynth Res 117:91–120

    Article  PubMed  CAS  Google Scholar 

  • Böcher M, Kluge M (1978) The C4-pathway of C-fixation in Spinacea olearacea II. Pulse chase experiments with suspended leaf slices. Zeitschriftfür Pflanzenphysiologie 86:405–421

    Article  Google Scholar 

  • Borland AM, Griffiths H (1997) A comparative study on the regulation of C3 and C4 carboxylation processes in the constitutive crassulacean acid metabolism (CAM) plant Kalanchoe daigremontiana and the C3-CAM intermediate Clusia minor. Planta 201:368–378

    Article  PubMed  CAS  Google Scholar 

  • Borland A, Taybi T (2004) Synchronization of metabolic processes in plants with crassulacean acid metabolism. J Exp Bot 55:1255–1265

    Article  PubMed  CAS  Google Scholar 

  • Borland AM, Hartwell J, Jenkins GI, Wilkins MB, Nimmo HG (1999) Metabolite control overrides circadian regulation of phosphoenolpyruvate carboxylase kinase and CO2 fixation in crassulacean acid metabolism. Plant Physiol 121:889–896

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Borland AM, Griffiths H, Hartwell J, Smith JAC (2009) Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J Exp Bot 60:2879–2896

    Article  PubMed  CAS  Google Scholar 

  • Borland AM, Zambrano VAB, Ceusters J, Shorrock K (2011) The photosynthetic plasticity of crassulacean acid metabolism: an evolutionary innovation for sustainable productivity in a changing world. New Phytol 191:619–633

    Article  PubMed  CAS  Google Scholar 

  • Borland AM, Hartwell J, Weston DJ, Schlauch KA, Tschaplinski TJ, Tuskan GA, Yang X, Cushman JC (2014) Engineering crassulacean acid metabolism to improve water-use efficiency. Trends Plant Sci 19:327–338

    Article  PubMed  CAS  Google Scholar 

  • Boxall SF, Foster JM, Bohnert HJ, Cushman JC, Nimmo HG, Hartwell J (2005) Conservation and divergence of circadian clock operation in a stress-inducible crassulacean acid metabolism species reveals clock compensation against stress. Plant Physiol 137:969–982

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brodribb TJ, Feild TS (2010) Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol Lett 13:175–183

    Article  PubMed  Google Scholar 

  • Caird MA, Richards JH, Donovan LA (2007) Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant Physiol 143:4–10

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen C, Xiao Y-G, Li X, Ni M (2012) Light-regulated stomatal aperture in Arabidopsis. Mol Plant 5:566–572

    Article  PubMed  Google Scholar 

  • Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15:1196–1200

    Article  PubMed  CAS  Google Scholar 

  • Covington MF, Panda S, Liu XL, Strayer CA, Wagner DR, Kay SA (2001) ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell 13:1305–1315

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cowling SA (2013) Did early land plants use carbon concentrating mechanisms? Trends Plant Sci 18:120–124

    Article  PubMed  CAS  Google Scholar 

  • Crayn MC, Winter K, Smith JAC (2004) Multiple origins of Crassulacean acid metabolism and the epiphytic habit in the Neotropical family Bromeliaceae. Proc Natl Acad Sci U S A 101:3703–3708

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cushman JC, Bohnert HJ (1999) Crassulacean acid metabolism: molecular genetics. Annu Rev Plant Physiol Plant Mol Biol 50:305–332

    Article  PubMed  CAS  Google Scholar 

  • Cushman JC, Tillett RL, Wood JA, Branco JM, Schlauch KA (2008) Large-scale mRNA expression profiling in the common ice plant, Mesembryanthemum crystallinum, performing C3 photosynthesis and Crassulacean acid metabolism (CAM). J Exp Bot 59:1875–1894

    Article  PubMed  CAS  Google Scholar 

  • Dodd AN, Borland AM, Haslam RP, Griffiths H, Maxwell K (2002) Crassulacean acid metabolism: plastic, fantastic. J Exp Bot 53:569–580

    Article  PubMed  CAS  Google Scholar 

  • Dodd AN, Griffiths H, Taybi T, Cushman JC, Borland AM (2003) Integrating diel starch metabolism with the circadian and environmental regulation of crassulacean acid metabolism in Mesembryanthemum crystallinum. Planta 216:789–797

    PubMed  CAS  Google Scholar 

  • Doubnerová V, Ryslavá H (2011) What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Sci 180:575–583

    Article  PubMed  Google Scholar 

  • Drennan PM, Nobel PS (2000) Responses of CAM species to increase atmospheric CO2 concentrations. Plant Cell Environ 23:767–781

    Article  CAS  Google Scholar 

  • Edwards EJ, Ogburn RM (2012) Angiosperm responses to a low-CO2 world: CAM and C4 photosynthesis as parallel evolutionary trajectories. Int J Plant Sci 173:724–733

    Article  CAS  Google Scholar 

  • Ehleringer JR, Monson JK (1993) Evolutionary and ecological aspects of photosynthetic pathway variation. Annu Rev Ecol Syst 24:411–439

    Article  Google Scholar 

  • Ehleringer JR, Sage RF, Flanagan LB, Pearcy RW (1991) Climate change and the evolution of C4 photosynthesis. Trends Ecol Evol 6:95–99

    Article  PubMed  CAS  Google Scholar 

  • Flexas J, Ribas-Carbó M, Diaz-Espejo A, Galmés J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621

    Article  PubMed  CAS  Google Scholar 

  • Gennidakis S, Rao S, Greenham K, Winter K, Uhrig RG, O’Leary B, Snedden WA, Lu C, Plaxton WC (2007) Bacterial- and plant-type phosphoenolpyruvate carboxylase polypeptides interact in the hetero-oligomeric Class-2 PEPC complex of developing castor oil seeds. Plant J 52:839–849

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez MC, Sanchez R, Cejudo FJ (2003) Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings. Planta 216:985–992

    PubMed  CAS  Google Scholar 

  • Gousset-Dupont A, Lebouteiller B, Monreal J, Echevarria C, Pierre JN, Hodges M, Vidal J (2005) Metabolite and post-translational control of phosphoenolpyruvate carboxylase from leaves and mesophyll cell protoplasts of Arabidopsis thaliana. Plant Sci 169:1096–1101

    Article  CAS  Google Scholar 

  • Hartwell J, Nimmo G, Wilkins M, Jenkins G, Nimmo H (1999) Phosphoenolpyruvate carboxylase kinase is a novel protein kinase regulated at the level of gene expression. Plant J 20:333–342

    Article  PubMed  CAS  Google Scholar 

  • Hartwell J, Nimmo GA, Wilkins MB, Jenkins GI, Nimmo HG (2002) Probing the circadian control of phosphoenolpyruvate carboxylase kinase expression in Kalanchoë fedtschenkoi. Funct Plant Biol 29:663–668

    Article  CAS  Google Scholar 

  • Hashimoto M, Negi J, Young J, Israelsson M, Schroeder JI, Iba K (2006) Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat Cell Biol 8:391–397

    Article  PubMed  CAS  Google Scholar 

  • Hibberd JM, Covshoff S (2010) The regulation of gene expression required for C4 photosynthesis. Annu Rev Plant Biol 61:181–207

    Article  PubMed  CAS  Google Scholar 

  • Hicks KA, Millar AJ, Carré IA, Somers DE, Straume M, Meeks-Wagner DR, Kay SA (1996) Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science 274:790–792

    Article  PubMed  CAS  Google Scholar 

  • Holthe PA, Sternberg LSL, Ting IP (1987) Developmental control of CAM in Peperomia scandens. Plant Physiol 84:743–747

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hubbard KE, Webb AAR (2011) Circadian rhythms: FLOWERING LOCUS T extends opening hours. Curr Biol 21:636–638

    Article  Google Scholar 

  • Keeley JE (1985) The role of CAM in the carbon economy of the submerged-aquatic Isoetes howellii. Verhandlungen des Internationalen Verein Limnologie 22:2909–2911

    CAS  Google Scholar 

  • Keeley JE, Rundel PW (2003) Evolution of CAM and C4 carbon-concentrating mechanisms. Int J Plant Sci 164:55–77

    Article  Google Scholar 

  • Kim T-H, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ Signaling. Annu Rev Plant Biol 61:561–591

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • KinoshitaT ON, HayashiY MS, Nakamura S, Soda M, Kato Y, Ohnishi M, Nakano T, Inoue S, Shimazaki K (2011) FLOWERING LOCUS T regulates stomatal opening. Curr Biol 21:1232–1238

    Article  Google Scholar 

  • Kluge M (1968) Untersuchungenüber den Gaswechsel von Bryophyllum während der Lichtperiode. Planta 80:359–377

    Article  CAS  Google Scholar 

  • Kluge M (2008) Ecophysiology: migrations between different levels of scaling. Prog Bot 69:5–34

    Article  CAS  Google Scholar 

  • Klüsener B, Young JJ, Murata Y, Allen GJ, Mori IC, Hugouvieux V, Schroeder JI (2002) Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiol 130:2152–2163

    Article  PubMed  PubMed Central  Google Scholar 

  • Langdale JA (2011) C4 cycles: past, present, and future research on C4 photosynthesis. Plant Cell 23:3879–3892

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee DM, Assmann SM (1992) Stomatal responses to light in the facultative crassulacean acid metabolism species, Portulacaria afra. Physiol Plant 85:35–42

    Article  CAS  Google Scholar 

  • Liang YK, Dubos C, Dodd IC, Holroyd GH, Hetherington AM, Campbell MM (2005) AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Curr Biol 15:1201–1206

    Article  PubMed  CAS  Google Scholar 

  • Liu XL, Covington MF, Fankhauser C, Chory J, Wagner DR (2001) ELF3 encodes a circadian clock–regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell 13:1293–1304

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lüttge U (2002) CO2-concentrating: consequences in crassulacean acid metabolism. J Exp Bot 53:2131–2142

    Article  PubMed  Google Scholar 

  • Lüttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652

    Article  PubMed  Google Scholar 

  • Lüttge U (2008) Clusia: Holy Grail and enigma. J Exp Bot 59:1503–1514

    Article  PubMed  Google Scholar 

  • Lüttge U, Beck F (1992) Endogenous rhythms and chaos in crassulacean acid metabolism. Planta 188:28–38

    Article  PubMed  Google Scholar 

  • Masumoto C, Miyazawa SI, Ohkawa H, Fukuda T, Taniguchi Y, Murayama S, KusanoM SK, Fukayama H, Miyao M (2010) Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc Natl Acad Sci U S A 107:5226–5231

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Matiz A, Mioto PT, Mayorga AY, Freschi L, Mercier H (2013) CAM photosynthesis in bromeliads and agaves: what can we learn from these plants? In: Dubinsky Z (ed) Photosynthesis. Intech, Rijeka, Croatia, pp 91–134

    Google Scholar 

  • Matthews PGD, Seymour R (2013) Stomata actively regulate internal aeration of the sacred lotus Nelumbo nucifera. Plant Cell Environ 37:402–413

    Article  PubMed  Google Scholar 

  • Merilo E, Laanemets K, Hu H, Xue S, Jakobson L, Tulva I, Gonzalez-Guzman M, Rodruiguez PL, Schroeder JI, Broschè M, Kollist H (2013) PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation. Plant Physiol 162:1652–1668

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mott KA, Sibbernsen ED, Shope JC (2008) The role of the mesophyll in stomatal responses to light and CO2. Plant Cell Environ 31:1299–1306

    Article  PubMed  CAS  Google Scholar 

  • Nimmo HG (2000) The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci 5:75–80

    Article  PubMed  CAS  Google Scholar 

  • Nimmo HG (2003) Control of the phosphorylation of phosphoenolpyruvate carboxylase in higher plants. Arch Biochem Biophys 414:189–196

    Article  PubMed  CAS  Google Scholar 

  • O’Leary B, Park J, Plaxton WC (2011) The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 436:15–34

    Article  PubMed  Google Scholar 

  • Onai K, Okamoto K, Nishimoto H, Morioka C, Hirano M, Kami-ike N, Ishiura M (2004) Large-scale screening of Arabidopsis circadian clock mutants by a high-throughput real-time bioluminescence monitoring system. Plant J 40:1–11

    Article  PubMed  CAS  Google Scholar 

  • Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Physiol 29:379–414

    Article  CAS  Google Scholar 

  • Owen NA, Griffiths H (2013) A system dynamics model integrating physiology and biochemical regulation predicts extent of crassulacean acid metabolism (CAM) phases. New Phytol 200:1116–1131

    Article  PubMed  CAS  Google Scholar 

  • Ranson SL, Thomas M (1960) Crassulacean acid metabolism. Annu Rev Plant Physiol 11:81–110

    Article  CAS  Google Scholar 

  • Raven JA, Spicer RA (1996) The evolution of crassulacean acid metabolism. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution. Springer, Berlin, pp 360–385

    Chapter  Google Scholar 

  • Rodrigues MA, Matiz A, Cruz AB, Matsumura AT, Takahashi CA, Hamachi L, Félix LM, Pereira PN, Latansio-Aidar SP, Aidar MPM, Demarco D, Freschi L, Mercier H, Kerbauy GB (2013) Spatial patterns of photosynthesis in thin- and thick-leaved epiphytic orchids: unravelling C3-CAM plasticity in an organ-compartmented way. Ann Bot 112:17–29

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rodrigues MA, Freschi L, Pereira PN, Mercier H (2014) Interactions between nutrients and crassulacean acid metabolism. Prog Bot 75:167–186

    Article  Google Scholar 

  • Rogiers SY, Clarke SJ (2013) Nocturnal and daytime stomatal conductance respond to root-zone temperature in ‘Shiraz’ grapevines. Ann Bot 111:433–444

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shane MW, Fedosejevs ET, Plaxton WC (2013) Reciprocal control of anaplerotic phosphoenolpyruvate carboxylase by in vivo monoubiquitination and phosphorylation in developing proteoid roots of phosphate-deficient. Plant Physiol 161:1634–1644

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shenton M, Fontaine V, Hartwell J, Marsh JT, Jenkins GI, Nimmo HG (2006) Distinct patterns of control and expression amongst members of the PEP carboxylase kinase gene family in C4 plants. Plant J 48:45–53

    Article  PubMed  CAS  Google Scholar 

  • Silvera K, Neubig KM, Whitten M, Williams NH, Winter K, Cushman JC (2010) Evolution along the crassulacean acid metabolism continuum. Funct Plant Biol 37:995–1010

    Article  CAS  Google Scholar 

  • Sriram G, Fulton DB, Shanks JV (2007) Flux quantification in central carbon metabolism of Catharanthus roseus hairy roots by C-13 labeling and comprehensive bondomer balancing. Phytochemistry 68:2243–2257

    Article  PubMed  CAS  Google Scholar 

  • Tallman G, Zhu J, Mawson BT, Amodeo G, Nouhi Z, Levy K, Zeiger E (1997) Induction of CAM in Mesembryanthemum crystallinum abolishes the stomatal response to blue light and light-dependent zeaxanthin formation in guard cell chloroplasts. Plant Cell Physiol 38:236–242

    Article  CAS  Google Scholar 

  • Taybi T, Nimmo HG, Borland AM (2004) Expression of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase genes. Implications for genotypic capacity and phenotypic plasticity in the expression of Crassulacean acid metabolism. Plant Physiol 135:587–598

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thomas M, Beevers H (1949) Physiological studies on acid metabolism in green plants. II. Evidence of CO2 fixation in Bryophyllum and the study of diurnal variation of acidity in this genus. New Phytol 48:421–447

    Article  CAS  Google Scholar 

  • Ting IP (1985) Crassulacean acid metabolism. Annu Rev Plant Physiol 36:595–622

    Article  CAS  Google Scholar 

  • Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio G, Lamminmäki A, Brosché M, Moldau H, Desikan R, Schroeder JI, Kangasjärvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signaling. Nature 452:487–491

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Von Caemmerer S, Griffiths H (2009) Stomatal responses to CO2 during a dielcrassulacean acid metabolism cycle in Kalanchoë daigremontiana and Kalanchoë pinnata. Plant Cell Environ 32:567–576

    Article  Google Scholar 

  • West-Eberhard MJ, Smith JAC, Winter K (2011) Photosynthesis, reorganized. Science 332:311–312

    Article  PubMed  CAS  Google Scholar 

  • Wilkins MB (1984) A rapid circadian rhythm of carbon-dioxide metabolism in Bryophyllum fedtschenkoi. Planta 161:381–384

    Article  PubMed  CAS  Google Scholar 

  • Williams BP, Aubry S, Hicks JM (2012) Molecular evolution of genes recruited into C4 photosynthesis. Trends Plant Sci 17:213–220

    Article  PubMed  CAS  Google Scholar 

  • Winter K, Holtum JAM (2007) Environment or development? Lifetime net CO2 exchange and control of the expression of Crassulacean acid metabolism in Mesembryanthemum crystallinum. Plant Physiol 143:98–107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Winter K, Holtum JAM (2014) Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. J Exp Bot. doi:10.1093/jxb/eru063

  • Winter K, Smith JAC (1996) Crassulacean acid metabolism. Current status and perspectives. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution. Springer, Berlin, pp 389–426

    Chapter  Google Scholar 

  • Winter K, Garcia M, Holtum JAM (2008) On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoë, and Opuntia. J Exp Bot 59:1829–1840

    Article  PubMed  CAS  Google Scholar 

  • Wyka TP, Lüttge U (2003) Contribution of C3 carboxylation to the circadian rhythm of carbon dioxide uptake in a Crassulacean acid metabolism plant Kalanchoë daigremontiana. J Exp Bot 54:1471–1479

    Article  PubMed  CAS  Google Scholar 

  • Wyka TP, Bohn A, Duarte HM, Kaiser F, Lüttge U (2004) Perturbations of malate accumulation and the endogenous rhythms of gas exchange in the crassulacean acid metabolism plant Kalanchoë daigremontiana: testing the tonoplast-as-oscillator model. Planta 219:705–713

    Article  PubMed  CAS  Google Scholar 

  • Zeppel M, Logan B, Lewis JD, Phillips N, Tissue D (2013) Why lose water at night? Disentangling the mystery of nocturnal sap flow, transpiration and stomatal conductance – when, where, who? Acta Hortic 991:307–312

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Luciano Freschi for valuable discussions on the topic of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helenice Mercier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mioto, P.T., Rodrigues, M.A., Matiz, A., Mercier, H. (2015). CAM-Like Traits in C3 Plants: Biochemistry and Stomatal Behavior. In: Lüttge, U., Beyschlag, W. (eds) Progress in Botany. Progress in Botany, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-319-08807-5_8

Download citation

Publish with us

Policies and ethics