Skip to main content

Genetic Polymorphisms and the Vascular Endothelium

  • Chapter
  • First Online:
Introduction to Translational Cardiovascular Research

Abstract

The healthy vascular endothelium exerts atheroprotective actions through vasoactive mediators such as nitric oxide and prostacyclin. It should be noted that inflammation and genetics are both prominent mechanisms in the pathogenesis of endothelial dysfunction and atherosclerosis. Currently, a growing body of evidence has emerged regarding genetic component and its role in the aim of assessing vascular endothelium. Of note, genetic variation within the population seems to determine endothelial responses and potential modify both atherogenesis and individual’s responses to risk factors. It has been estimated that only 10–20 % of the variation in endothelial function may be accounted for by genes. Moreover, several studies have explored the association of vascular disease with gene polymorphisms of candidate genes, such as of endothelial nitric oxide synthase, cytokines, chemokines and of other proinflammatory molecules. Although their results are preliminary and to a certain extent conflicting, current data provide some evidence that alterations in the genetics, especially of the inflammatory cascade, may modify vascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE II:

Angiotensin Converting Enzyme Gene

ACS:

Acute Coronary Syndromes

ADMA:

Asymmetrical dimethylarginine

AGT:

Angiotensinogen Gene

AngII:

Angiotensin-II

ATH:

Atherosclerosis

BH4:

Tetrahydrobiopterin

CAMs:

Cell Adhesion Molecules

CD 40L:

CD40 ligand

CPR:

C-reactive protein

CVDs:

Cardiovascular Diseases

eNos:

Endothelial Nitric Oxide Synthase

EPCs:

Endothelial Progenitors Cells

ET-1:

Endothelin −1

FMD:

Flow Mediated Dilation

ICAM-1:

Intercellular Adhesion molecule −1

IL-1:

Interleukin-1

IMT:

Carotid Intima Media Thickness

iNos:

Inducible Nitric Oxide Synthase

MCP-1:

Monocyte Chemotactic Protein −1

NADPH:

Nicotinamide Adenine Dinucleotide Phosphate Oxidase

NO:

Nitric Oxide

Ox LDL:

Oxidized Low-density Lipoprotein

PAI-1:

Plasminogen Activator inhibitor-1

PGI 2:

Prostacyclin

ROS:

Reactive Oxygen Species

SMCs:

Smooth Muscle Cells

TNF-a:

Tumor Necrosis Factor-a

TXA2:

Thromboxane

VSMC:

Vascular Smooth Muscle Cells

vWF:

Von Willebrand Factor

XO:

Xanthine Oxidase

References

  1. Tousoulis D, Kampoli AM, Papageorgiou N, Androulakis E, Antoniades C, Toutouzas K, et al. Pathophysiology of atherosclerosis: the role of inflammation. Curr Pharm Des. 2011;17:4089–110.

    Article  CAS  PubMed  Google Scholar 

  2. Galley HF, Webster NR. Physiology of the endothelium. Br J Anaesth. 2004;93:105–13.

    Article  CAS  PubMed  Google Scholar 

  3. Glasser S, Selwyn A, Ganz P. Atherosclerosis: risk factors and the vascular endothelium. Am Heart J. 1996;131:379–84.

    Article  CAS  PubMed  Google Scholar 

  4. Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005;111:3481–8.

    Article  PubMed  Google Scholar 

  5. Tousoulis D, Briasoulis A, Papageorgiou N, Tsioufis C, Tsiamis E, Toutouzas K, et al. Oxidative stress and endothelial function: therapeutic interventions. Recent Pat Cardiovasc Drug Discov. 2011;6:103–14.

    Article  CAS  PubMed  Google Scholar 

  6. Tousoulis D. Biomarkers in cardiovascular disease. Curr Med Chem. 2012;19:2483–4.

    Article  CAS  PubMed  Google Scholar 

  7. Tousoulis D, Antoniades C, Koumallos N, Stefanadis C. Pro-inflammatory cytokines in acute coronary syndromes: from bench to bedside. Cytokine Growth Factor Rev. 2006;17:225–33.

    Article  CAS  PubMed  Google Scholar 

  8. Damas JK, Aukrust P. Systemic markers of inflammation – are they useful predictive tools in coronary artery disease? Scand Cardiovasc J. 2006;40:262–6.

    Article  PubMed  Google Scholar 

  9. Jones LC, Hingorani AD. Genetic regulation of endothelial function. Heart. 2005;91:1275–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Vallance P, Chan N. Endothelial function and nitric oxide: clinical relevance. Heart. 2001;85:342–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gallagher G, Sumpio BE. Vascular endothelial cells. In: Sumpio BE, Sidawy AS, editors. Basic science of vascular disease. Mt Kisco: Futura Publishing Co; 1997. p. 151–86.

    Google Scholar 

  12. Rubanyi GM. The role of endothelium in cardiovascular homeostasis and diseases. J Cardiovasc Pharmacol. 1993;22 Suppl 4:S1–14.

    Article  CAS  PubMed  Google Scholar 

  13. Inoue A, Yanagisawa M, Kimura S, Kasuya Y, Miyauchi T, Goto K, et al. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A. 1989;86:2863–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Gardiner SM, Kemp PA, March JE, Bennett T, Davenport AP, Edvinsson L. Effects of an ET1-receptor antagonist, FR139317, on regional haemodynamic responses to endothelin-1 and [Ala11,15]Ac-endothelin-1 (6–21) in conscious rats. Br J Pharmacol. 1994;112:477–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Esper RJ, Nordaby RA, Vilariño JO, Paragano A, Cacharrón JL, Machado RA. Endothelial dysfunction: a comprehensive appraisal. Cardiovasc Diabetol. 2006;5:4. doi:10.1186/1475-2840-5-4.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Wennmalm A. Endothelial nitric oxide and cardiovascular disease. J Intern Med. 1994;235:317–27.

    Article  CAS  PubMed  Google Scholar 

  17. Stehouwer CD, Lambert J, Donker AJ, van Hinsbergh VW. Endothelial dysfunction and pathogenesis of diabetic angiopathy. Cardiovasc Res. 1997;34:55–68.

    Article  CAS  PubMed  Google Scholar 

  18. Erickson LA, Hekman CM, Loskutoff DJ. The primary plasminogen-activator inhibitors in endothelial cells, platelets, serum, and plasma are immunologically related. Proc Natl Acad Sci U S A. 1985;82:8710–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Tousoulis D, Charakida M, Stefanadis C. Endothelial function and inflammation in coronary artery disease. Heart. 2006;92:441–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest. 1997;100:2153–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hirata Y, Nagata D, Suzuki E, Nishimatsu H, Suzuki J, Nagai R. Diagnosis and treatment of endothelial dysfunction in cardiovascular disease. A Review. Int Heart J. 2010;51:1–6.

    Article  CAS  PubMed  Google Scholar 

  22. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt TS, Alp NJ. Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease. Clin Sci (Lond). 2007;113:47–63.

    CAS  Google Scholar 

  24. Antoniades C, Shirodaria C, Crabtree M, Rinze R, Alp N, Cunnington C, et al. Altered plasma versus vascular biopterins in human atherosclerosis reveal relationships between endothelial nitric oxide synthase coupling, endothelial function, and inflammation. Circulation. 2007;116:2851–9.

    Article  CAS  PubMed  Google Scholar 

  25. Wilcox JN, Subramanian JNR, Sundellet CL, Tracey WR, Pollock JS, Harrison DG, et al. Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler Thromb Vasc Biol. 1997;17:2479–88.

    Article  CAS  PubMed  Google Scholar 

  26. Stuehr DJ. Mammalian nitric oxide synthases. Biochim Biophys Acta. 1999;1411:217–30.

    Article  CAS  PubMed  Google Scholar 

  27. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399:601–5.

    Article  CAS  PubMed  Google Scholar 

  28. Touyz RM, Briones AM. Reactive oxygen species and vascular biology: implications in human hypertension. Hypertens Res. 2011;34:5–14.

    Article  CAS  PubMed  Google Scholar 

  29. Bautista LE. Inflammation, endothelial dysfunction, and the risk of high blood pressure: epidemiologic and biological evidence. J Hum Hypertens. 2003;17:223–30.

    Article  CAS  PubMed  Google Scholar 

  30. Chiarugi P, Cirri P. Redox regulation of protein tyrocine phosphatases during receptor tyrocine kinase signal transduction. Trends Biochem Sci. 2003;28:509–14.

    Article  CAS  PubMed  Google Scholar 

  31. Briasoulis A, Tousoulis D, Androulakis ES, Papageorgiou N, Latsios G, Stefanadis C. Endothelial dysfunction and atherosclerosis: focus on novel therapeutic approaches. Recent Pat Cardiovasc Drug Discov. 2012;7:21–32.

    Article  CAS  PubMed  Google Scholar 

  32. Tousoulis D, Hatzis G, Papageorgiou N, Androulakis E, Bouras G, Giolis A, et al. Assessment of acute coronary syndromes: focus on novel biomarkers. Curr Med Chem. 2012;19:2572–87.

    Article  CAS  PubMed  Google Scholar 

  33. Srinivasan N, White HE, Emsley J, Wood SP, Pepys MB, Blundell TL. Comparative analyses of pentraxins: implications for protomer assembly and ligand binding. Structure. 1994;2:1017–27.

    Article  CAS  PubMed  Google Scholar 

  34. Hein TW, Singh U, Vasquez-Vivar J, Devaraj S, Kuo L, Jialal I. Human C-reactive protein induces endothelial dysfunction and uncoupling of eNOS in vivo. Atherosclerosis. 2009;206:61–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Kampoli AM, Tousoulis D, Antoniades C, Siasos G, Stefanadis C. Biomarkers of premature atherosclerosis. Trends Mol Med. 2009;15:323–32.

    Article  CAS  PubMed  Google Scholar 

  36. Ikeda U, Takahashi M, Shimada K. C-reactive protein directly inhibits nitric oxide production by cytokine-stimulated vascular smooth muscle cells. J Cardiovasc Pharmacol. 2003;42:607–11.

    Article  CAS  PubMed  Google Scholar 

  37. Venugopal SK, Devaraj S, Yuhanna I, Shaul P, Jialal I. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation. 2002;106:1439–41.

    Article  CAS  PubMed  Google Scholar 

  38. Tousoulis D, Papageorgiou N, Latsios G, Siasos G, Antoniades C, Stefanadis C. C-reactive protein and endothelial dysfunction: gazing at the coronaries. Int J Cardiol. 2011;152:1–3.

    Article  PubMed  Google Scholar 

  39. Kampoli AM, Tousoulis D, Briasoulis A, Latsios G, Papageorgiou N, Stefanadis C. Potential pathogenic inflammatory mechanisms of endothelial dysfunction induced by type 2 diabetes mellitus. Curr Pharm Des. 2011;17:4147–58.

    Article  CAS  PubMed  Google Scholar 

  40. Tabit CE, Chung WB, Hamburg NM, Vita JA. Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Disord. 2010;11:61–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Tousoulis D, Androulakis E, Papageorgiou N, Briasoulis A, Siasos G, Antoniades C, et al. From atherosclerosis to acute coronary syndromes: the role of soluble CD40 ligand. Trends Cardiovasc Med. 2010;20:153–64.

    Article  CAS  PubMed  Google Scholar 

  42. Meigs JB, Larson MG, Fox CS, Keaney Jr JF, Vasan RS, Benjamin EJ. Association of oxidative stress, insulin resistance, and diabetes risk phenotypes: the Framingham Offspring Study. Diabetes Care. 2007;30:2529–35.

    Article  CAS  PubMed  Google Scholar 

  43. Cunnington C, Van Assche T, Shirodaria C, Kylintireas I, Lindsay AC, Lee JM, et al. Systemic and vascular oxidation limits the efficacy of oral tetrahydrobiopterin treatment in patients with coronary artery disease. Circulation. 2012;125:1356–66.

    Article  CAS  PubMed  Google Scholar 

  44. Stam F, van Guldener C, Schalkwijk CG, ter Wee PM, Donker AJ, Stehouwer CD. Impaired renal function is associated with markers of endothelial dysfunction and increased inflammatory activity. Nephrol Dial Transplant. 2003;18:892–8.

    Article  PubMed  Google Scholar 

  45. Das UN, Repossi G, Dain A, Eynard AR. L-arginine, NO and asymmetrical dimethylarginine in hypertension and type 2 diabetes. Front Biosci. 2011;16:13–20.

    Article  CAS  Google Scholar 

  46. Bakogiannis C, Tousoulis D, Androulakis E, Briasoulis A, Papageorgiou N, Vogiatzi G, et al. Circulating endothelial progenitor cells as biomarkers for prediction of cardiovascular outcomes. Curr Med Chem. 2012;19:2597–604.

    Article  CAS  PubMed  Google Scholar 

  47. Tousoulis D, Androulakis E, Papageorgiou N, Siasos G, Latsios G, Charakida M, et al. Novel biomarkers assessing endothelial dysfunction: role of microRNAs. Curr Top Med Chem. 2013;13:1518–26.

    Article  CAS  PubMed  Google Scholar 

  48. Marsden PA, Schappert KT, Chen HS, Flowers M, Sundell CL, Wilcox JN, et al. Molecular cloning and characterization of human endothelial nitric oxide synthase. FEBS Lett. 1992;307:287–93.

    Article  CAS  PubMed  Google Scholar 

  49. Guzik TJ, Black E, West NE, McDonald D, Ratnatunga C, Pillai R, et al. Relationship between the G894T polymorphism (Glu298Asp variant) in endothelial nitric oxide synthase and nitric oxide-mediated endothelial function in human atherosclerosis. Am J Med Genet. 2001;100:130–7.

    Article  CAS  PubMed  Google Scholar 

  50. Leeson CP, Hingorani AD, Mullen MJ, Jeerooburkhan N, Kattenhorn M, Cole TJ, et al. Glu298Asp endothelial nitric oxide synthase gene polymorphism interacts with environmental and dietary factors to influence endothelial function. Circ Res. 2002;90:1153–8.

    Article  CAS  PubMed  Google Scholar 

  51. McDonald DM, Alp NJ, Channon KM. Functional comparison of the endothelial nitric oxide synthase Glu298Asp polymorphic variants in human endothelial cells. Pharmacogenetics. 2004;14:831–9.

    Article  CAS  PubMed  Google Scholar 

  52. Antoniades C, Tousoulis D, Vasiliadou C, Pitsavos C, Toutouza M, Tentolouris C, et al. Genetic polymorphisms G894T on the eNOS gene is associated with endothelial function and vWF levels in premature myocardial infarction survivors. Int J Cardiol. 2006;107:95–100.

    Article  PubMed  Google Scholar 

  53. Nakayama M, Yasue H, Yoshimura M, Shimasaki Y, Kugiyama K, Ogawa H, et al. T-786–– > C mutation in the 5′-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation. 1999;99:2864–70.

    Article  CAS  PubMed  Google Scholar 

  54. Cattaruzza M, Guzik TJ, Słodowski W, Pelvan A, Becker J, Halle M, et al. Shear stress insensitivity of endothelial nitric oxide synthase expression as a genetic risk factor for coronary heart disease. Circ Res. 2004;95:841–7.

    Article  CAS  PubMed  Google Scholar 

  55. Wang XL, Sim AS, Badenhop RF, McCredie RM, Wilcken DE. A smoking-dependent risk of coronary artery disease associated with a polymorphism of the endothelial nitric oxide synthase gene. Nat Med. 1996;2:41–5.

    Article  CAS  PubMed  Google Scholar 

  56. Hingorani AD. Endothelial nitric oxide synthase polymorphisms and hypertension. Curr Hypertens Rep. 2003;5:19–25.

    Article  PubMed  Google Scholar 

  57. Persu A, Stoenoiu MS, Messiaen T, Davila S, Robino C, El-Khattabi O, et al. Modifier effect of ENOS in autosomal dominant polycystic kidney disease. Hum Mol Genet. 2002;11:229–41.

    Article  CAS  PubMed  Google Scholar 

  58. Antoniades C, Shirodaria C, Van Assche T, Cunnington C, Tegeder I, Lötsch J, et al. GCH1 haplotype determines vascular and plasma biopterin availability in coronary artery disease effects on vascular superoxide production and endothelial function. J Am Coll Cardiol. 2008;52:158–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Wilson AM, Ryan MC, Boyle AJ. The novel role of C-reactive protein in cardiovascular disease: risk marker or pathogen. Int J Cardiol. 2006;106:291–7.

    Article  PubMed  Google Scholar 

  60. Singh U, Devaraj S, Vasquez-Vivar J, Jialal I. C-reactive protein decreases endothelial nitric oxide synthase activity via uncoupling. J Mol Cell Cardiol. 2007;43:780–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Fichtlscherer SG, Rosenberger DH, Walter S, Breuer S, Dimmeler S, Zeiher AM. Elevated C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease. Circulation. 2000;102:1000–6.

    Article  CAS  PubMed  Google Scholar 

  62. Hage FG, Szalai AJ. The role of C-reactive protein polymorphisms in inflammation and cardiovascular risk. Curr Atheroscler Rep. 2009;11:124–30.

    Article  CAS  PubMed  Google Scholar 

  63. Hage FG, Szalai AJ. C-reactive protein gene polymorphisms, C-reactive protein blood levels, and cardiovascular disease risk. J Am Coll Cardiol. 2007;50:1115–22.

    Article  CAS  PubMed  Google Scholar 

  64. Lawlor DA, Harbord RM, Timpson NJ, et al. The association of C-reactive protein and CRP genotype with coronary heart disease: findings from five studies with 4,610 cases amongst 18,637 participants. PLoS One. 2008;3:e3011.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Brull DJ, Montgomery HE, Sanders J, Dhamrait S, Luong L, Rumley A, et al. Interleukin-6 gene – 174 G > C and – 572 G > C promoter polymorphism are strong predictors of plasma interleukin-6 levels after coronary artery by-pass surgery. Arterioscler Thromb Vasc Biol. 2001;21:1458–63.

    Article  CAS  PubMed  Google Scholar 

  66. Humphries S, Luong L, Ogg MS, Hawe E, Miller GJ. The interelukin-6, −174G/C promoter polymorphism is associated with risk of coronary heart disease and systolic blood pressure in healthy men. Eur Heart J. 2001;22:2243–52.

    Article  CAS  PubMed  Google Scholar 

  67. Terry CF, Loukaci V, Green FR. Cooperative influence of genetic polymorphisms on interleukin-6 transcriptional regulation. J Biol Chem. 2000;275:18138–44.

    Article  CAS  PubMed  Google Scholar 

  68. Stoica AL, Stoica E, Constantinescu I, Uscatescu V, Ginghina C. Interleukin-6 and interleukin-10 gene polymorphism, endothelial dysfunction, and postoperative prognosis in patients with peripheral arterial disease. J Vasc Surg. 2010;52:103–9.

    Article  PubMed  Google Scholar 

  69. Ponthieux A, Lambert D, Herbeth B, Droesch S, Pfister M, Visvikis S. Association between Gly241Arg ICAM-1 gene polymorphism and serum sICAM-1 concentration in the Stanislas cohort. Eur J Hum Genet. 2003;11:679–86.

    Article  CAS  PubMed  Google Scholar 

  70. Motawi T, Shaker O, Taha N, Abdel Raheem M. Genetic variations in E-selectin and ICAM-1: relation to atherosclerosis. Med Sci Monit. 2012;18:CR381–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Yoshida M, Takano Y, Sasaoka T, Izumi T, Kimura A. E-selectin polymorphism associated with myocardial infarction causes enhanced leukocyte-endothelial interactions under flow conditions. Arterioscler Thromb Vasc Biol. 2003;23:783–8.

    Article  CAS  PubMed  Google Scholar 

  72. Vadapalli S, Rani HS, Sastry B, Nallari P. Endothelin-1 and endothelial nitric oxide polymorphisms in idiopathic pulmonary arterial hypertension. Int J Mol Epidemiol Genet. 2010;1:208–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Ezzidi I, Mtiraoui N, Chaieb M, Kacem M, Mahjoub T, Almawi WY. Diabetic retinopathy, PAI-1 4G/5G and -844G/A polymorphisms, and changes in circulating PAI-1 levels in Tunisian type 2 diabetes patients. Diabetes Metab. 2009;35:214–9.

    Article  CAS  PubMed  Google Scholar 

  74. Robinson SD, Ludlam CA, Boon NA, Newby DE. Tissue plasminogen activator genetic polymorphisms do not influence tissue plasminogen activator release in patients with coronary heart disease. J Thromb Haemost. 2006;4:2262–9.

    Article  CAS  PubMed  Google Scholar 

  75. Ray KK, Camp NJ, Bennett CE, Francis SE, Crossman DC. Genetic variation at the interleukin-1 locus is a determinant of changes in soluble endothelial factors in patients with acute coronary syndromes. Clin Sci (Lond). 2002;103:303–10.

    CAS  Google Scholar 

  76. Çelik A, Özçetin M, Ates O, et al. Association between C-reactive protein, endothelial nitric oxide synthase, and interleukin-6 gene polymorphisms in adolescents with a family history of premature atherosclerosis. J Am Coll Cardiol. 2013;62(18_S2):C125–6.

    Article  Google Scholar 

  77. Price DT, Loscalzo J. Cellular adhesion molecules and atherogenesis. Am J Med. 1999;107:85–97.

    Article  CAS  PubMed  Google Scholar 

  78. Braunersreuther V, Mach F, Steffens S. The specific role of chemokines in atherosclerosis. Thromb Haemost. 2007;97:714–21.

    CAS  PubMed  Google Scholar 

  79. Wilker EH, Alexeeff SE, Poon A, Litonjua AA, Sparrow D, Vokonas PS, et al. Candidate genes for respiratory disease associated with markers of inflammation and endothelial dysfunction in elderly men. Atherosclerosis. 2009;206:480–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Kohara K, Tabara Y, Yamamoto Y, Igase M, Nakura J, Miki T. Genotype-specific association between circulating soluble cellular adhesion molecules and carotid intima-media thickness in community residents: J-SHIPP study. Shimanami Health Promoting Program. Hypertens Res. 2002;25:31–9.

    Article  CAS  PubMed  Google Scholar 

  81. Hixson JE, Blangero J. Genomic searches for genes that influence atherosclerosis and its risk factors. Ann N Y Acad Sci. 2000;902:1–7.

    Article  CAS  PubMed  Google Scholar 

  82. Barbaux SC, Blankenberg S, Rupprecht HJ, Francomme C, Bickel C, Hafner G, et al. Association between P-selectin gene polymorphisms and soluble P-selectin levels and their relation to coronary artery disease. Arterioscler Thromb Vasc Biol. 2001;21:1668–73.

    Article  CAS  PubMed  Google Scholar 

  83. Reiner AP, Carlson CS, Thyagarajan B, Rieder MJ, Polak JF, Siscovick DS, et al. Soluble P-selectin, SELP polymorphisms, and atherosclerotic risk in European-American and African-African young adults: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Arterioscler Thromb Vasc Biol. 2008;28:1549–55.

    Article  CAS  PubMed  Google Scholar 

  84. Volcik KA, Ballantyne CM, Coresh J, Folsom AR, Wu KK, Boerwinkle E. P-selectin Thr715Pro polymorphism predicts P-selectin levels but not risk of incident coronary heart disease or ischemic stroke in a cohort of 14595 participants: the Atherosclerosis Risk in Communities Study. Atherosclerosis. 2006;186:74–9.

    Article  CAS  PubMed  Google Scholar 

  85. Antoniades C, Bakogiannis C, Tousoulis D, Antonopoulos AS, Stefanadis C. The CD40/CD40 ligand system: linking inflammation with atherothrombosis. J Am Coll Cardiol. 2009;54:669–77.

    Article  CAS  PubMed  Google Scholar 

  86. Burdon KP, Langefeld CD, Beck SR, Wagenknecht LE, Carr JJ, Rich SS, et al. Variants of the CD40 gene but not of the CD40L gene are associated with coronary artery calcification in the Diabetes Heart Study (DHS). Am Heart J. 2006;151:706–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Tousoulis MD, PhD, FACC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Androulakis, E., Stefanadis, C., Tousoulis, D. (2015). Genetic Polymorphisms and the Vascular Endothelium. In: Cokkinos, D. (eds) Introduction to Translational Cardiovascular Research. Springer, Cham. https://doi.org/10.1007/978-3-319-08798-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08798-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08797-9

  • Online ISBN: 978-3-319-08798-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics