Skip to main content

Genome-Wide Analysis of AP2/ERF Family Genes in Lotus corniculatus Shows LcERF054 and LcERF080 Enhance Salt Tolerance

  • Conference paper
  • First Online:
Molecular Breeding of Forage and Turf
  • 676 Accesses

Abstract

Lotus corniculatus is used in agriculture as a main forage plant. Apetala2/Ethylene response factor (AP2/ERF) family plays an important role in regulating the gene expression in response to many forms of stress. Here, we identified 127 AP2/ERF genes by in silico cloning method. The phylogeny , gene structures, and putative conserved motifs in L. japonicus ERF proteins were analyzed. Expression profile analysis of AP2/ERF genes by quantitative real-time PCR revealed that 19 LcERF genes, including B-2 group LcERF054 and B-4 group LcERF080, were significantly induced by salt stress . Overexpression of LcERF054 or LcERF080 in Arabidopsis enhanced the tolerances to salt stress, showed elevated levels of relative moisture contents, soluble sugars, proline , and lower levels of malondialdehyde under stress conditions compared to wild-type. The expression of hyperosmotic salinity response genes COR15A, P5CS1, and so on were found to be elevated in the LcERF054 or LcERF080 overexpressing Arabidopsis plants compared to wild-type. These results revealed that LcERF genes play important roles in L. corniculatus cv Leo under salt stress and that LcERFs are attractive engineering targets in applied efforts to improve abiotic stress tolerances in L. corniculatus or other crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25(12):1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    Article  CAS  Google Scholar 

  • Bailey TL, Bodén M, Buske FA, Frith M, Grant CE, Clementi L, et al (2009) MEME suite: tools for motif discovery and searching. Nucleic Acids Res 37(suppl 2):W202–W208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baker S, Wilhelm K, Thomashow M (1994) The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24(5):701–713

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren R, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Chen M, Li YP, Chen J, Chen B, Zhou DJ (2003) Construction of yeast expression plasmid hERR1/HBD and preliminary identification of its function. Acta Academiae Medicinae Militaris Tertiae 1:51–53 (in Chinese)

    Google Scholar 

  • Chen T, Yang Q, Gruber M, Kang J, Sun Y, Ding W, Zhang T, Zhang X (2012) Expression of an alfalfa (Medicago sativa L.) ethylene response factor gene MsERF8 in tobacco plants enhances resistance to salinity. Mol Biol Rep 39(5):6067–6075

    Article  CAS  PubMed  Google Scholar 

  • Chenna R (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31(13):3497–3500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Dinh TT, Girke T, Liu X, Yant L, Schmid M, Chen X (2012) The floral homeotic protein APETALA2 recognizes and acts through an AT-rich sequence element. Development 139(11):1978–1986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duan B, Lu Y, Yin C, Junttila O, Li C (2005) Physiological responses to drought and shade in two contrasting Picea asperata populations. Physiol Plantarum 124(4):476–484

    Article  CAS  Google Scholar 

  • Guo A, He K, Liu D, Bai S, Gu X, Wei L, Luo L (2005) DATF: a database of Arabidopsis transcription factors. Bioinformatics 21(10):2568–2569

    Article  CAS  PubMed  Google Scholar 

  • Hao D (1998) Unique mode of GCC box recognition by the DNA-binding domain of Ethylene-responsive Element-binding Factor (ERF Domain) in plant. J Biol Chem 273(41):26857–26861

    Article  CAS  PubMed  Google Scholar 

  • Huh SU, Lee IJ, Ham BK, Paek KH (2012) Nicotiana tabacum Tsip1-interacting ferredoxin 1 affects biotic and abiotic stress resistance. Mol Cells 34(1):43–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hundertmark M, Hincha DK (2008) LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118

    Article  PubMed Central  PubMed  Google Scholar 

  • Jin X, Xue Y, Wang R, Xu R, Bian L, Zhu B, Han H, Peng R, Yao Q (2013) Transcription factor OsAP21 gene increases salt/drought tolerance in transgenic Arabidopsis thaliana. Mol Biol Rep 40(2):1743–1752

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3):287–291

    Article  CAS  PubMed  Google Scholar 

  • Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12(12):2339–2350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lehner A, Corbineau F, Bailly C (2006) Changes in lipid status and glass properties in cotyledons of developing sunflower seeds. Plant Cell Physiol 47(7):818–828

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40(D1):D302–D305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Mishra AK, Puranik S, Bahadur RP, Prasad M (2012) The DNA-binding activity of an AP2 protein is involved in transcriptional regulation of a stress-responsive gene, SiWD40, in foxtail millet. Genomics 100(4):252–263

    Article  CAS  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012). AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):86–96

    Article  CAS  PubMed  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140(2):411–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, et al (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34(2):137–148

    Article  CAS  PubMed  Google Scholar 

  • Ohto MA, Floyd SK, Fischer RL, Goldberg RB, Harada JJ (2009) Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sex Plant Reprod 22(4):277–289

    Article  PubMed Central  PubMed  Google Scholar 

  • Pan Y, Seymour GB, Lu C, Hu Z, Chen X, Chen G (2012) An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep 31(2):349–360

    Article  CAS  PubMed  Google Scholar 

  • Rai AN, Penna S (2013) Molecular evolution of plant P5CS gene involved in proline biosynthesis. Mol Biol Rep 40(11):6429–6435

    Article  CAS  PubMed  Google Scholar 

  • Ripoll JJ, Roeder AH, Ditta GS, Yanofsky MF (2011) A novel role for the floral homeotic gene APETALA2 during Arabidopsis fruit development. Development 138(23):5167–5176

    Article  CAS  PubMed  Google Scholar 

  • Robles P, Micol JL, Quesada V (2012) Arabidopsis MDA1, a nuclear-encoded protein, functions in chloroplast development and abiotic stress responses. PLoS One 7(8):e42924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):405–425

    Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290(3):998–1009

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, et al (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15(4):227–239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swanson EB, Somers DA, Tomes DT (1990) Birdsfoot Trefoil (Lotus corniculatus L.). In: Bajaj YPS (ed) Legumes and oilseed crops I. Springer, Berlin.

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tian Y, Zhang H, Pan X, Chen X, Zhang Z, Lu X, Huang R (2011) Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Res 20(4):857–866

    Article  CAS  PubMed  Google Scholar 

  • Wurschum T, Gross-Hardt R, Laux T (2006) APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem. Plant Cell 18(2):295–307

    Article  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Molec Gen Genet 238(1–2):17–25

    CAS  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Zhai Y, Wang Y, Li L, Lei T, Yan F, Su L, Li X, Zhao Y, Sun X, Li J, Wang Q (2013) Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene 513(1):174–183

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhao G, Xia C, Jia J, Liu X, Kong X (2012) A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. J Exp Bot 63(16):5873–5885

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Li Z, Li J, Wang A (2013) Ectopic Overexpression of SsCBF1, a CRT/DRE-Binding factor from the nightshade plant Solanum lycopersicoides, confers freezing and salt tolerance in transgenic Arabidopsis. PLoS One 8(6):e61810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao T, Liang D, Wang P, Liu J, Ma F (2012) Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress. Mol Genet Genomics 287(5):423–436

    Article  CAS  PubMed  Google Scholar 

  • Zhou ML, M JT, Pang JF, Zhang ZL, Tang YX, Wu YM (2010) Regulation of plant stress response by dehydration responsive element binding (DREB) transcription factors. Afr J Biotechnol 9(54):9255–9279

    CAS  Google Scholar 

  • Zhou ML, M JT, Zhao YM, Wei YH, Tang YX, Wu YM (2012) Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica. Gene 506(1):10–17

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31372361) and the National Program on Key Basic Research Project (973 Program) (Grant No. 2014CB138701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Min Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sun, ZM., Zhou, ML., Xiao, XG., Tang, YX., Wu, YM. (2015). Genome-Wide Analysis of AP2/ERF Family Genes in Lotus corniculatus Shows LcERF054 and LcERF080 Enhance Salt Tolerance. In: Budak, H., Spangenberg, G. (eds) Molecular Breeding of Forage and Turf. Springer, Cham. https://doi.org/10.1007/978-3-319-08714-6_6

Download citation

Publish with us

Policies and ethics