Skip to main content

The Fight Against the Slime: Can We Ever Win?

  • Chapter
  • First Online:
Perioperative Medical Management for Total Joint Arthroplasty

Abstract

Microorganisms universally attach to surface and produce extracellular matrix of polysaccharidic nature termed slime. This phenomenon is now regularly referred to as biofilm formation. Biofilm-associated infections pose a serious problem for public health because bacteria growing in a biofilm are more recalcitrant to the action of antibiotics and host defenses than cells growing in a planktonic state. In orthopedic surgery, such proprieties of biofilm made prosthesis-associated infection a devastating complication. In such a “war,” the prevention with adequate pharmacological prophylaxis, pathogen-specific treatment, and the combination antimicrobial regimens are of paramount importance.

The better knowledge in PJI pathogenesis and biofilm formation, reached in these last years, is a new weapon in the armamentarium of physicians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Academy of Orthopaedic Surgeons. Information statement: recommendations for the use of intravenous antibiotic prophylaxis in primary total joint arthroplasty. http://www.aaos.org/about/papers/advistmt/1027.asp

  • American Society of Health-System Pharmacists (1999) ASHP therapeutic guidelines on antimicrobial prophylaxis in surgery. Am J Health Syst Pharm 56:1839–1888

    Google Scholar 

  • American Society of Health-System Pharmacists (2011) Draft therapeutic guidelines on antimicrobial prophylaxis in surgery. 2011. http://www.ashp.org/DocLibrary/BestPractices/TGSurgery.aspx

  • An YH, Friedmann RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43:338–348

    Article  CAS  PubMed  Google Scholar 

  • Arciola CR, Campoccia D, Montanaro L (2002) Effects of antibiotic resistance of Staphylococcus epidermidis following adhesion to polymethylmethacrylate and to silicone surfaces. Biomaterials 23:1495–1502

    Article  CAS  PubMed  Google Scholar 

  • Balaban N, Cirioni O, Giacometti A et al (2007) Treatment of Staphylococcus aureus biofilm infection by the quorum-sensing inhibitor RIP. Antimicrob Agents Chemother 51(6):2226–2229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bassetti M, Vitale F, Melica G et al (2005) Linezolid in the treatment of Gram-positive prosthetic joint infections. J Antimicrob Chemother 55:387–390. doi:10.1093/jac/dki016

    Article  CAS  PubMed  Google Scholar 

  • Bearson BL, Bearson SM (2008) The role of the QseC quorum- sensing sensor kinase in colonization and norepinephrine- enhanced motility of Salmonella enterica serovar Typhimurium. Microb Pathog 44:271–278

    Article  CAS  PubMed  Google Scholar 

  • Beer D, Stoodley P, Lewandowski Z (1994) Liquid flow in heterogeneous biofilm. Biotechnol Bioeng 44:636–641

    Article  PubMed  Google Scholar 

  • Bernard L, Hoffmeyer P, Assal M et al (2004) Trends in the treatment of orthopaedic prosthetic infections. J Antimicrob Chemother 53(2):127–129, Review

    Article  CAS  PubMed  Google Scholar 

  • Bink A, Kucharíková S, Neirinck B et al (2012) The nonsteroidal antiinflammatory drug diclofenac potentiates the in vivo activity of caspofungin against Candida albicans biofilms. J Infect Dis 206(11):1790–1797

    Article  CAS  PubMed  Google Scholar 

  • Borens O, Yusuf E, Trampuz A (2013) Surgical Site Infections (SSIs): risk factors and prevention strategies. Eur Instr Lect 13:15–25

    Article  Google Scholar 

  • Bratzler DW, Houck PM (2004) Antimicrobial prophylaxis for surgery: an advisory statement from the National Surgical Infection Prevention Project. Clin Infect Dis 38:1706–1715

    Article  PubMed  Google Scholar 

  • Bratzler DW, Hunt DR (2006) The surgical infection prevention and surgical care improvement projects: national initiatives to improve outcomes for patients having surgery. Clin Infect Dis 43(3):322

    Article  PubMed  Google Scholar 

  • Burton E, Gawande PV, Yakandawala N et al (2006) Antibiofilm activity of GlmU enzyme inhibitors against catheter-associated uropathogens. Antimicrob Agents Chemother 50:1835–1840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chorell E, Pinkner JS, Phan G et al (2010) Design and synthesis of C-2 substituted thiazolo and dihydrothiazolo ring-fused 2-pyridones: pilicides with increased antivirulence activity. J Med Chem 53:5690–5695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Classen DC, Evans RS, Pestotnik SL et al (1992) The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N Engl J Med 326(5):281–286

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE et al (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Montanaro L, Arciola CR (2007) Bacterial communications in implant infections: a target for an intelligence war. Int J Artif Organs 30(9):757–763

    CAS  PubMed  Google Scholar 

  • Coventry MB (1975) Treatment of infections occurring in total hip surgery. Orthop Clin North Am 6(4):991–1003

    CAS  PubMed  Google Scholar 

  • Cristhensen GD, Simpson WA, Bisno AL et al (1982) Adherence of slime-producing Staphylococcus epidermidis to smooth surfaces. Infect Immun 37(1):318–326

    Google Scholar 

  • Cusumano CK, Pinkner J, Han Z et al (2011) Treatment and prevention of UTI with orally active mannoside FimH inhibitors. Sci Transl Med 3:109ra115

    Article  PubMed Central  PubMed  Google Scholar 

  • Darley ES, MacGowan AP (2004) Antibiotic treatment of gram-positive bone and joint infections. J Antimicrob Chemother 53(6):928–935

    Article  CAS  PubMed  Google Scholar 

  • Darouiche RO (2001) Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis 33:1567–1572

    Article  CAS  PubMed  Google Scholar 

  • Davies DG, Chakrabarty AM, Geesey GG (1993) Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl Environ Microbiol 59:1181–1886

    CAS  PubMed Central  PubMed  Google Scholar 

  • Del Pozo JL, Rouse MS, Mandrekar JN et al (2009) Effect of electrical current on the activities of antimicrobial agents against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 53(1):35–40

    Article  PubMed Central  PubMed  Google Scholar 

  • Domínguez-Herrera J, Docobo-Pérez F, López-Rojas R et al (2012) Efficacy of daptomycin versus vancomycin in an experimental model of foreign-body and systemic infection caused by biofilm producers and methicillin-resistant Staphylococcus epidermidis. Antimicrob Agents Chemother 56(2):613–617

    Article  PubMed Central  PubMed  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    Article  PubMed Central  PubMed  Google Scholar 

  • Driffield K, Miller K, Bostock M et al (2008) Increased mutability of Pseudomonas aeruginosa in biofilms. J Antimicrob Chemother 61:1053–1056

    Article  CAS  PubMed  Google Scholar 

  • Ehlers LJ, Bouwer EJ (1999) RP4 plasmid transfer among species of Pseudomonas in a bio fi lm reactor. Water Sci Technol 7:163–171

    Article  Google Scholar 

  • Eshkenazi AU, Garti A, Tamir L et al (2001) Serum and synovial vancomycin concentrations following prophylactic administration in knee arthroplasty. Am J Knee Surg 14(4):221–223

    CAS  PubMed  Google Scholar 

  • Foster TJ, McDevit TD (1994) Molecular basis of adherence of staphylococci to biomaterials. In: Bisno AL, Waldvo gel FA (eds) Infection associated with indwelling medical devices. American Society for Microbiology, Washington, pp 31–43

    Google Scholar 

  • French GL (1998) Enterococci and vancomycin resistance. Clin Infect Dis 27(Suppl 1):S75–S83

    Article  CAS  PubMed  Google Scholar 

  • Fulkerson E, Valle CJ, Wise B et al (2006) Antibiotic susceptibility of bacteria infecting total joint arthroplasty sites. J Bone Joint Surg Am 88:1231–1237

    Article  PubMed  Google Scholar 

  • Giulieri SG, Graber P, Ochsner PE et al (2004) Management of infection associated with total hip arthroplasty according to a treatment algorithm. Infection 32(4):222–228

    Article  CAS  PubMed  Google Scholar 

  • Goggin R, Jardeleza C, Wormald PJ et al (2013) Corticosteroids directly reduce Staphylococcus aureus biofilm growth: an in vitro study. Laryngoscope(Jul 23)

    Google Scholar 

  • Gradl G, Horn C, Postl LK et al (2011) Antibiotic prophylaxis in primary and revision hip arthroplasty: what is the evidence? Orthopade 40(6):520–527

    Article  CAS  PubMed  Google Scholar 

  • Gristina AG, Costerton JW (2009) Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis to biomaterials. J Bone Joint Surg Am 67-A:264–273

    Google Scholar 

  • Gristina AG, Hobgood CD, Webb LX (1987) Adhesive colonisation of biomaterials and antibiotic resistance. Biomaterials 8:423–426

    Article  CAS  PubMed  Google Scholar 

  • Gristina AG, Oga M, Webb LX et al (1995) Adherent bacterial colonization in the pathogenesis of osteomyelitis. Science 228:990–993

    Article  Google Scholar 

  • Guiton PS, Hung CS, Kline KA et al (2009) Contribution of autolysin and Sortase A during Enterococcus faecalis DNA-dependent biofilm development. Infect Immun 77:3626–3638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11(7):1034–1043. doi:10.1111/j.1462-5822.2009.01323

    Article  CAS  PubMed  Google Scholar 

  • Hasty DL, Ofek I, Courtney HS et al (1992) Multiple adhesins for streptococci. Infect Immun 60:2147–2152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35:780–789

    Article  CAS  PubMed  Google Scholar 

  • Høiby N, Bjarnsholt T, Givskov M et al (2010a) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    Article  PubMed  Google Scholar 

  • Høiby N, Ciofu O, Bjarnsholt T (2010b) Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 5(11):1663–1674

    Article  PubMed  Google Scholar 

  • Kalman D, Barriere SL (1990) Review of the pharmacology, pharmacokinetics, and clinical use of cephalosporins. Tex Heart Inst J 17:203–215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a010306

    PubMed Central  PubMed  Google Scholar 

  • Krekeler C, Ziehr H, Klein J (1989) Physical methods for characterization of microbial cell surfaces. Experientia 45:1047–1054

    Article  CAS  PubMed  Google Scholar 

  • Laffer RR, Graber P, Ochsner PE et al (2006) Outcome of prosthetic knee-associated infection: evaluation of 40 consecutive episodes at a single centre. Clin Microbiol Infect 12(5):433–439

    Article  CAS  PubMed  Google Scholar 

  • Lazar V (2011) Quorum sensing in bioflms—how to destroy the bacterial citadels or their cohesion/power? Anaerobe 17(6):280–285

    Article  PubMed  Google Scholar 

  • Lenz AP, Williamson KS, Pitts B et al (2008) Localized gene expression in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 74:4463–4471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci 104:11197–11202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mack KD, Bartscht S, Dobinsky MA et al (2000) Staphylococcal factors involved in adhesion and biofilm formation on biomaterials. In: An YH, Friedmann RJ (eds) Handbook of bacterial adhesion. Principles, principles, methods, and applications. Humana Press Inc, Totowa, pp 307–330

    Chapter  Google Scholar 

  • Mangram AJ, Horan TC, Pearson ML et al (1999) The Hospital Infection Control Practices Advisory Committee. Guideline for the prevention of surgical site infection. Infect Control Hosp Epidemiol 20:247–280

    Article  Google Scholar 

  • Matar WY, Jafari SM, Restrepo C et al (2010) Preventing infection in total joint arthroplasty. J Bone Joint Surg Am 92(Suppl 2):36–46

    Article  PubMed  Google Scholar 

  • Matthews PC, Berendt AR, McNally MA et al (2009) Diagnosis and management of prosthetic joint infection. British Medical Journal 338, b1773–b1773

    Article  PubMed  Google Scholar 

  • Mauerhan DR, Nelson CL, Smith DL et al (1994) Prophylaxis against infection in total joint arthroplasty. One day of cefuroxime compared with three days of cefazolin. J Bone Joint Surg Am 76:39–45

    CAS  PubMed  Google Scholar 

  • Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261

    Article  CAS  PubMed  Google Scholar 

  • Montanaro L, Arciola CR (2000) Studying bacterial adhesion to irregular or porous surfaces. In: An YH, Friedmann RJ (eds) Handbook of bacterial adhesion. Principles, methods and applications. Humana Press Inc, Totowa, pp 331–343

    Chapter  Google Scholar 

  • Monzon M, Oteiza C, Leiva J et al (2002) Biofilm testing of Staphylococcus epidermidis clinical isolates: low performance of vancomycin in relation to other antibiotics. Diagn Microbiol Infect Dis 44:319–324

    Article  CAS  PubMed  Google Scholar 

  • Osmon DR, Berbari EF, Berendt AR et al (2013) Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 56(1):e1–e25

    Article  PubMed  Google Scholar 

  • Parra-Ruiz J, Bravo-Molina A, Peña-Monje A et al (2012) Activity of linezolid and high-dose daptomycin, alone or in combination, in an in vitro model of Staphylococcus aureus biofilm. J Antimicrob Chemother 67(11):2682–2685

    Article  CAS  PubMed  Google Scholar 

  • Patti JM, Allen BL, McGavin MJ et al (1994) MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48:585–617

    Article  CAS  PubMed  Google Scholar 

  • Prokuski L (2008) Prophylactic antibiotics in orthopaedic surgery. J Am Acad Orthop Surg 16:283–293

    PubMed  Google Scholar 

  • Rani SA, Pitts B, Beyenal H et al (2007) Spatial patterns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal diverse physiological states. J Bacteriol 189:4223–4233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rao N, Cannella B, Crossett LS et al (2008) A preoperative decolonization protocol for Staphylococcus aureus prevents orthopaedic infections. Clin Orthop Relat Res 466:1343–1348

    Article  PubMed Central  PubMed  Google Scholar 

  • Rohde H, Frankenberger S, Z¨ahringer U et al (2010) Structure, function and contribution of polysaccharide intercellular adhesin (PIA) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial-associated infections. Eur J Cell Biol 89:103–111

    Article  CAS  PubMed  Google Scholar 

  • Rorabeck CH, Bourne RB, Laupacis A et al (1994) A double-blind study of 250 cases comparing cemented with cementless total hip arthroplasty. Cost-effectiveness and its impact on health-related quality of life. Clin Orthop Relat Res 298:156–164

    PubMed  Google Scholar 

  • Schamalzried TP, Amstutz HC, Au MK (1992) Etiology of deep sepsis in total hip arthroplasty: the significance of hematogenous and recurrent infections. Clin Orthop Relat Res 280:200–207

    Google Scholar 

  • Shiau AL, Wu CL (1998) The inhibitory effect of Staphylococcus epidermidis slime on the phagocytosis of murine peritoneal macrophages is interferon-independent. Microbiol Immunol 42:33–40

    Article  CAS  PubMed  Google Scholar 

  • Sousa C (2011) Staphylococcus epidermidis: adhesion and biofilm formation onto biomaterials. LAP LAMBERT Academic Publishing, Saarbrü cken

    Google Scholar 

  • Stanley NR, Britton RA, Grossman AD et al (2003) Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 185:1951–1957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stein A, Bataille JF, Drancourt M et al (1998) Ambulatory treatment of multidrug-resistant Staphylococcus-infected orthopedic implants with high-dose oral co-trimoxazole (trimethoprim-sulfamethoxazole). Antimicrob Agents Chemother 42(12):3086–3091

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  CAS  PubMed  Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    Article  CAS  PubMed  Google Scholar 

  • Stoodley P, Ehrlich GD, Sedghizadeh PP et al (2011) Orthopaedic biofilm infections. Curr Orthop Pract 22(6):558–563. doi:10.1097/BCO.0b013e318230efcf

    Article  PubMed Central  PubMed  Google Scholar 

  • Tang HJ, Chen CC, Cheng KC et al (2012) In vitro efficacy of fosfomycin-containing regimens against methicillin-resistant Staphylococcus aureus in biofilms. J Antimicrob Chemother 67(4):944–950

    Article  CAS  PubMed  Google Scholar 

  • Taraszkiewicz A, Fila A, Grinholc M et al (2013) Innovative strategies to overcome biofilm resistance. BioMed Res Int 2013, Article ID 150653, 13 pages. http://dx.doi.org/10.1155/2013/150653

  • Trampuz A, Zimmerli W (2005) New strategies for the treatment of infections associated with prosthetic joints. Curr Opin Investig Drugs 6(2):185–190

    CAS  PubMed  Google Scholar 

  • Trampuz A, Zimmerli W (2008) Diagnosis and treatment of implant-associated septic arthritis and osteomyelitis. Current Infectious Disease Reports 10, 394–403

    Article  PubMed  Google Scholar 

  • Vuong C, Voyich JM, Fischer ER et al (2004) Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6:269–275

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang Q, Yang M et al (2011) QseBC controls flagellar motility, fimbrial hemagglutination and intracellular virulence in fish pathogen Edwardsiella tarda. Fish Shellfish Immunol 30:944–953

    Article  PubMed  Google Scholar 

  • Webb JS, Thompson LS, James S et al (2003) Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185:4585–4592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weber WP, Marti WR, Zwahlen M et al (2008) The timing of surgical antimicrobial prophylaxis. Ann Surg 247:918–926

    Article  PubMed  Google Scholar 

  • Whiteley M, Bangera MG, Bumgarner RE et al (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864

    Article  CAS  PubMed  Google Scholar 

  • Widmer AF, Frei R, Rajacic Z et al (1990) Correlation between in vivo and in vitro efficacy of antimicrobial agents against foreign body infections. J Infect Dis 162(1):96–102

    Article  CAS  PubMed  Google Scholar 

  • Wiklund I, Romanus B (1991) A comparison of quality of life before and after arthroplasty in patients who had arthrosis of the hip joint. J Bone Joint Surg Am 73(5):765–769

    CAS  PubMed  Google Scholar 

  • Wu H, Lee B, Yang L et al (2011) Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation. FEMS Immunol Med Microbiol 62(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • Zimmerli W, Widmer AF, Blatter M et al (1998) Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA 279(19):1537–1541

    Article  CAS  PubMed  Google Scholar 

  • Zimmerli W, Trampuz A, Ochsner PE (2004) Prosthetic-joint infections. N Engl J Med 351(16):1701–1703

    Article  CAS  Google Scholar 

  • Zoubos AB, Galanakos SP, Soucacos PN (2012) Orthopedics and biofilm – what do we know? A review. Med Sci Monit 18(6):RA89–RA96, PMID: 22648264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Alessia Diaco for the support given in building figures and the editors for the excellent opportunity of writing a chapter of this book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Piolanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lisanti, M., Piolanti, N., Tagliaferri, E., Andreani, L., Parchi, P., Menichetti, F. (2015). The Fight Against the Slime: Can We Ever Win?. In: Baldini, A., Caldora, P. (eds) Perioperative Medical Management for Total Joint Arthroplasty. Springer, Cham. https://doi.org/10.1007/978-3-319-07203-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07203-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07202-9

  • Online ISBN: 978-3-319-07203-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics