Skip to main content

Overcoming Bortezomib Resistance: A Review of the Second-Generation Proteasome Inhibitor Carfilzomib in the Treatment of Multiple Myeloma

  • Chapter
  • First Online:
Resistance to Proteasome Inhibitors in Cancer

Abstract

Proteasome inhibitors now form the backbone of many myeloma therapeutic regimens in either the upfront or relapsed settings, but both innate and acquired drug resistance have emerged as significant clinical challenges. The second-generation proteasome inhibitor carfilzomib recently received regulatory approval after showing promising activity in bortezomib-resistant preclinical models and human studies. Although similar to its predecessor in targeting the chymotrypsin-like activity of both the constitutive proteasome and the immunoproteasome, carfilzomib has distinct mechanistic and structural properties. These allow it to bind irreversibly and provide a more sustained target inhibition than bortezomib, which is characterized by slowly reversible binding kinetics, and may in part contribute to its ability to overcome proteasome inhibitor resistance. Numerous clinical studies with carfilzomib are now underway investigating its use in various clinical settings and in combination with other novel agents that will provide valuable insight on its optimal use. However, despite the important advance in myeloma therapeutics that carfilzomib represents, cross-resistance between proteasome inhibitors remains a significant problem. This highlights the need for a better understanding of proteasome inhibitor resistance biology to inform the design of next-generation proteasome inhibitors and the development of rational drug combinations to overcome such resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AE:

Adverse event

ChT-L:

Chymotrypsin-like activity

C-L:

Caspase-like

DLTs:

Dose-limiting toxicities

FDA:

Food and Drug Administration

IMiD:

Immunomodulatory drug

JNK:

c-Jun NH2-terminal kinase

MM:

Multiple myeloma

MRs:

Minor responses

MTD:

Maximum tolerated dose

nCR:

Near-complete responses

NDA:

New Drug Application

NF-κB:

Nuclear factor kappa B

NHL:

Non-Hodgkin lymphoma

ODAC:

Oncologic Drugs Advisory Committee

ORR:

Overall response rate

PFS:

Progression-free survival

PR:

Partial response

PSMB:

Proteasome subunit β type

SD:

Stable disease

T-L:

Trypsin-like

TTP:

Time to progression

uCR:

Unconfirmed complete response

VGPRs:

Very good partial responses

WM:

Waldenström’s macroglobulinemia

References

  1. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Zeldenrust SR, Dingli D, Russell SJ, Lust JA, Greipp PR, Kyle RA, Gertz MA (2008) Improved survival in multiple myeloma and the impact of novel therapies. Blood 111(5):2516–2520

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, Rajkumar SV, Srkalovic G, Alsina M, Alexanian R, Siegel D, Orlowski RZ, Kuter D, Limentani SA, Lee S, Hideshima T, Esseltine DL, Kauffman M, Adams J, Schenkein DP, Anderson KC (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348(26): 2609–2617

    Article  PubMed  CAS  Google Scholar 

  3. Chen D, Frezza M, Schmitt S, Kanwar J, Dou QP (2011) Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets 11(3):239–253

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Kale AJ, Moore BS (2012) Molecular mechanisms of acquired proteasome inhibitor resistance. J Med Chem 55(23):10317–10327

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. McConkey DJ, Zhu K (2008) Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updat 11(4–5):164–179

    Article  PubMed  CAS  Google Scholar 

  6. Lonial S, Waller EK, Richardson PG, Jagannath S, Orlowski RZ, Giver CR, Jaye DL, Francis D, Giusti S, Torre C, Barlogie B, Berenson JR, Singhal S, Schenkein DP, Esseltine DL, Anderson J, Xiao H, Heffner LT, Anderson KC (2005) Risk factors and kinetics of thrombocytopenia associated with bortezomib for relapsed, refractory multiple myeloma. Blood 106(12):3777–3784

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Argyriou AA, Iconomou G, Kalofonos HP (2008) Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood 112(5):1593–1599

    Article  PubMed  CAS  Google Scholar 

  8. Hanada M, Sugawara K, Kaneta K, Toda S, Nishiyama Y, Tomita K, Yamamoto H, Konishi M, Oki T (1992) Epoxomicin, a new antitumor agent of microbial origin. J Antibiot (Tokyo) 45(11):1746–1752

    Article  CAS  Google Scholar 

  9. Sugawara K, Hatori M, Nishiyama Y, Tomita K, Kamei H, Konishi M, Oki T (1990) Eponemycin, a new antibiotic active against B16 melanoma. I. Production, isolation, structure and biological activity. J Antibiot (Tokyo) 43(1):8–18

    Article  CAS  Google Scholar 

  10. Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM (1999) Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci U S A 96(18):10403–10408

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Groll M, Kim K, Kairies N, Huber R, Crews C (2000) Crystal structure of epoxomicin: 20s proteasome reveals a molecular basis for selectivity of α′, β′-epoxyketone proteasome inhibitors. J Am Chem Soc 122(6):1237–1238

    Article  CAS  Google Scholar 

  12. Sin N, Kim KB, Elofsson M, Meng L, Auth H, Kwok BH, Crews CM (1999) Total synthesis of the potent proteasome inhibitor epoxomicin: a useful tool for understanding proteasome biology. Bioorg Med Chem Lett 9(15):2283–2288

    Article  PubMed  CAS  Google Scholar 

  13. Elofsson M, Splittgerber U, Myung J, Mohan R, Crews CM (1999) Towards subunit-specific proteasome inhibitors: synthesis and evaluation of peptide alpha′, beta′-epoxyketones. Chem Biol 6(11):811–822

    Article  PubMed  CAS  Google Scholar 

  14. Kuhn DJ, Chen Q, Voorhees PM, Strader JS, Shenk KD, Sun CM, Demo SD, Bennett MK, van Leeuwen FW, Chanan-Khan AA, Orlowski RZ (2007) Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 110(9):3281–3290

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Parlati F, Lee SJ, Aujay M, Suzuki E, Levitsky K, Lorens JB, Micklem DR, Ruurs P, Sylvain C, Lu Y, Shenk KD, Bennett MK (2009) Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome. Blood 114(16): 3439–3447

    Article  PubMed  CAS  Google Scholar 

  16. Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, Tsujimoto Y, Yoshioka K, Masuyama N, Gotoh Y (2004) JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J 23(8):1889–1899

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Yang Y, Ikezoe T, Saito T, Kobayashi M, Koeffler HP, Taguchi H (2004) Proteasome inhibitor PS-341 induces growth arrest and apoptosis of non-small cell lung cancer cells via the JNK/c-Jun/AP-1 signaling. Cancer Sci 95(2):176–180

    Article  PubMed  CAS  Google Scholar 

  18. Sacco A, Aujay M, Morgan B, Azab AK, Maiso P, Liu Y, Zhang Y, Azab F, Ngo HT, Issa GC, Quang P, Roccaro AM, Ghobrial IM (2011) Carfilzomib-dependent selective inhibition of the chymotrypsin-like activity of the proteasome leads to antitumor activity in Waldenstrom’s Macroglobulinemia. Clin Cancer Res 17(7):1753–1764

    Article  PubMed  CAS  Google Scholar 

  19. Demo SD, Kirk CJ, Aujay MA, Buchholz TJ, Dajee M, Ho MN, Jiang J, Laidig GJ, Lewis ER, Parlati F, Shenk KD, Smyth MS, Sun CM, Vallone MK, Woo TM, Molineaux CJ, Bennett MK (2007) Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 67(13):6383–6391

    Article  PubMed  CAS  Google Scholar 

  20. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X, Bailey C, Joseph M, Libermann TA, Treon SP, Munshi NC, Richardson PG, Hideshima T, Anderson KC (2002) Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci U S A 99(22):14374–14379

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Meiners S, Heyken D, Weller A, Ludwig A, Stangl K, Kloetzel PM, Kruger E (2003) Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of Mammalian proteasomes. J Biol Chem 278(24):21517–21525

    Article  PubMed  CAS  Google Scholar 

  22. Shaughnessy JD Jr, Qu P, Usmani S, Heuck CJ, Zhang Q, Zhou Y, Tian E, Hanamura I, van Rhee F, Anaissie E, Epstein J, Nair B, Stephens O, Williams R, Waheed S, Alsayed Y, Crowley J, Barlogie B (2011) Pharmacogenomics of bortezomib test-dosing identifies hyperexpression of proteasome genes, especially PSMD4, as novel high-risk feature in myeloma treated with Total Therapy 3. Blood 118(13):3512–3524

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Oerlemans R, Franke NE, Assaraf YG, Cloos J, van Zantwijk I, Berkers CR, Scheffer GL, Debipersad K, Vojtekova K, Lemos C, van der Heijden JW, Ylstra B, Peters GJ, Kaspers GL, Dijkmans BA, Scheper RJ, Jansen G (2008) Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood 112(6):2489–2499

    Article  PubMed  CAS  Google Scholar 

  24. Lu S, Chen Z, Yang J, Chen L, Gong S, Zhou H, Guo L, Wang J (2008) Overexpression of the PSMB5 gene contributes to bortezomib resistance in T-lymphoblastic lymphoma/leukemia cells derived from Jurkat line. Exp Hematol 36(10):1278–1284

    Article  PubMed  CAS  Google Scholar 

  25. Suzuki E, Demo S, Deu E, Keats J, Arastu-Kapur S, Bergsagel PL, Bennett MK, Kirk CJ (2011) Molecular mechanisms of bortezomib resistant adenocarcinoma cells. PLoS One 6(12):e27996

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Franke NE, Niewerth D, Assaraf YG, van Meerloo J, Vojtekova K, van Zantwijk CH, Zweegman S, Chan ET, Kirk CJ, Geerke DP, Schimmer AD, Kaspers GJ, Jansen G, Cloos J (2012) Impaired bortezomib binding to mutant β5 subunit of the proteasome is the underlying basis for bortezomib resistance in leukemia cells. Leukemia 26(4):757–768

    Article  PubMed  CAS  Google Scholar 

  27. Politou M, Karadimitris A, Terpos E, Kotsianidis I, Apperley JF, Rahemtulla A (2006) No evidence of mutations of the PSMB5 (beta-5 subunit of proteasome) in a case of myeloma with clinical resistance to Bortezomib. Leuk Res 30(2):240–241

    Article  PubMed  CAS  Google Scholar 

  28. Lichter DI, Danaee H, Pickard MD, Tayber O, Sintchak M, Shi H, Richardson PG, Cavenagh J, Blade J, Facon T, Niesvizky R, Alsina M, Dalton W, Sonneveld P, Lonial S, van de Velde H, Ricci D, Esseltine DL, Trepicchio WL, Mulligan G, Anderson KC (2012) Sequence analysis of beta-subunit genes of the 20S proteasome in patients with relapsed multiple myeloma treated with bortezomib or dexamethasone. Blood 120(23):4513–4516

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Wang L, Kumar S, Fridley BL, Kalari KR, Moon I, Pelleymounter LL, Hildebrandt MA, Batzler A, Eckloff BW, Wieben ED, Greipp PR (2008) Proteasome beta subunit pharmacogenomics: gene resequencing and functional genomics. Clin Cancer Res 14(11):3503–3513

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Papandreou CN, Daliani DD, Nix D, Yang H, Madden T, Wang X, Pien CS, Millikan RE, Tu SM, Pagliaro L, Kim J, Adams J, Elliott P, Esseltine D, Petrusich A, Dieringer P, Perez C, Logothetis CJ (2004) Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J Clin Oncol 22(11):2108–2121

    Article  PubMed  CAS  Google Scholar 

  31. Hemeryck A, Geerts R, Monbaliu J, Hassler S, Verhaeghe T, Diels L, Verluyten W, van Beijsterveldt L, Mamidi RN, Janssen C, De Coster R (2007) Tissue distribution and depletion kinetics of bortezomib and bortezomib-related radioactivity in male rats after single and repeated intravenous injection of 14 C-bortezomib. Cancer Chemother Pharmacol 60(6):777–787

    Article  PubMed  CAS  Google Scholar 

  32. Yang J, Wang Z, Fang Y, Jiang J, Zhao F, Wong H, Bennett MK, Molineaux CJ, Kirk CJ (2011) Pharmacokinetics, pharmacodynamics, metabolism, distribution, and excretion of carfilzomib in rats. Drug Metab Dispos 39(10):1873–1882

    Article  PubMed  CAS  Google Scholar 

  33. Rosen PJ, Gordon P, Lee E, Sausville K, Papadopoulous A, Wong M, Vallone L, Kunkel L, Infante J, Burris H (2012) Phase II results of study PX-171-007: a phase Ib/II study of carfilzomib (CFZ), a selective proteasome inhibitor, in patients with selected advanced metastatic solid tumors. J Clin Oncol 27(15S):(suppl; abstr 3515)

    Google Scholar 

  34. Wang Z, Yang J, Kirk C, Fang Y, Alsina M, Badros A, Papadopoulos K, Wong A, Woo T, Bomba D, Li J, Infante JR (2013) Clinical pharmacokinetics, metabolism, and drug-drug interaction of carfilzomib. Drug Metab Dispos 41(1):230–237

    Article  PubMed  CAS  Google Scholar 

  35. O’Connor OA, Stewart AK, Vallone M, Molineaux CJ, Kunkel LA, Gerecitano JF, Orlowski RZ (2009) A phase 1 dose escalation study of the safety and pharmacokinetics of the novel proteasome inhibitor carfilzomib (PR-171) in patients with hematologic malignancies. Clin Cancer Res 15(22):7085–7091

    Article  PubMed  PubMed Central  Google Scholar 

  36. Alsina M, Trudel S, Furman RR, Rosen PJ, O’Connor OA, Comenzo RL, Wong A, Kunkel LA, Molineaux CJ, Goy A (2012) A phase I single-agent study of twice-weekly consecutive-day dosing of the proteasome inhibitor carfilzomib in patients with relapsed or refractory multiple myeloma or lymphoma. Clin Cancer Res 18(17):4830–4840

    Article  PubMed  CAS  Google Scholar 

  37. Orlowski RZ, Stinchcombe TE, Mitchell BS, Shea TC, Baldwin AS, Stahl S, Adams J, Esseltine DL, Elliott PJ, Pien CS, Guerciolini R, Anderson JK, Depcik-Smith ND, Bhagat R, Lehman MJ, Novick SC, O’Connor OA, Soignet SL (2002) Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 20(22):4420–4427

    Article  PubMed  CAS  Google Scholar 

  38. Jagannath S, Vij R, Stewart AK, Trudel S, Jakubowiak AJ, Reiman T, Somlo G, Bahlis N, Lonial S, Kunkel LA, Wong A, Orlowski RZ, Siegel DS (2012) An open-label single-arm pilot phase II study (PX-171-003-A0) of low-dose, single-agent carfilzomib in patients with relapsed and refractory multiple myeloma. Clin Lymphoma Myeloma Leuk 12(5):310–318

    Article  PubMed  CAS  Google Scholar 

  39. Durie BG, Harousseau JL, Miguel JS, Blade J, Barlogie B, Anderson K, Gertz M, Dimopoulos M, Westin J, Sonneveld P, Ludwig H, Gahrton G, Beksac M, Crowley J, Belch A, Boccadaro M, Cavo M, Turesson I, Joshua D, Vesole D, Kyle R, Alexanian R, Tricot G, Attal M, Merlini G, Powles R, Richardson P, Shimizu K, Tosi P, Morgan G, Rajkumar SV (2006) International uniform response criteria for multiple myeloma. Leukemia 20(9):1467–1473

    Article  PubMed  CAS  Google Scholar 

  40. Blade J, Samson D, Reece D, Apperley J, Bjorkstrand B, Gahrton G, Gertz M, Giralt S, Jagannath S, Vesole D (1998) Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Myeloma Subcommittee of the EBMT. European Group for Blood and Marrow Transplant. Br J Haematol 102(5):1115–1123

    Article  PubMed  CAS  Google Scholar 

  41. Siegel DS, Martin T, Wang M, Vij R, Jakubowiak AJ, Lonial S, Trudel S, Kukreti V, Bahlis N, Alsina M, Chanan-Khan A, Buadi F, Reu FJ, Somlo G, Zonder J, Song K, Stewart AK, Stadtmauer E, Kunkel L, Wear S, Wong AF, Orlowski RZ, Jagannath S (2012) A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood 120(14):2817–2825

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Jakubowiak AJ, Siegel DS, Martin T, Wang M, Vij R, Lonial S, Trudel S, Kukreti V, Bahlis N, Alsina M, Chanan-Khan A, Buadi F, Reu FJ, Somlo G, Zonder J, Song K, Stewart AK, Stadtmauer E, Harrison BL, Wong AF, Orlowski RZ, Jagannath S (2013) Treatment outcomes in patients with relapsed and refractory multiple myeloma and high-risk cytogenetics receiving single-agent carfilzomib in the PX-171-003-A1 study. Leukemia 27(12):2351–2356

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Moreau P, Pylypenko H, Grosicki S, Karamanesht I, Leleu X, Grishunina M, Rekhtman G, Masliak Z, Robak T, Shubina A, Arnulf B, Kropff M, Cavet J, Esseltine DL, Feng H, Girgis S, van de Velde H, Deraedt W, Harousseau JL (2011) Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol 12(5):431–440. doi:10.1016/S1470-2045(11)70081-X

    Article  PubMed  Google Scholar 

  44. Arastu-Kapur S, Anderl JL, Kraus M, Parlati F, Shenk KD, Lee SJ, Muchamuel T, Bennett MK, Driessen C, Ball AJ, Kirk CJ (2011) Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events. Clin Cancer Res 17(9): 2734–2743

    Article  PubMed  CAS  Google Scholar 

  45. New Drug Application (NDA) 202714, carfilzomib (Kyprolis): Food and Drug Administration briefing document, Oncologic Drugs Advisory Committee Meeting, June 20, 2012.

    Google Scholar 

  46. Vij R, Wang M, Kaufman JL, Lonial S, Jakubowiak AJ, Stewart AK, Kukreti V, Jagannath S, McDonagh KT, Alsina M, Bahlis NJ, Reu FJ, Gabrail NY, Belch A, Matous JV, Lee P, Rosen P, Sebag M, Vesole DH, Kunkel LA, Wear SM, Wong AF, Orlowski RZ, Siegel DS (2012) An open-label, single-arm, phase 2 (PX-171-004) study of single-agent carfilzomib in bortezomib-naive patients with relapsed and/or refractory multiple myeloma. Blood 119(24): 5661–5670

    Article  PubMed  PubMed Central  Google Scholar 

  47. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, Harousseau JL, Ben-Yehuda D, Lonial S, Goldschmidt H, Reece D, San-Miguel JF, Blade J, Boccadoro M, Cavenagh J, Dalton WS, Boral AL, Esseltine DL, Porter JB, Schenkein D, Anderson KC (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352(24):2487–2498

    Article  PubMed  CAS  Google Scholar 

  48. Orlowski RZ, Nagler A, Sonneveld P, Blade J, Hajek R, Spencer A, San Miguel J, Robak T, Dmoszynska A, Horvath N, Spicka I, Sutherland HJ, Suvorov AN, Zhuang SH, Parekh T, Xiu L, Yuan Z, Rackoff W, Harousseau JL (2007) Randomized phase III study of pegylated liposomal doxorubicin plus bortezomib compared with bortezomib alone in relapsed or refractory multiple myeloma: combination therapy improves time to progression. J Clin Oncol 25(25):3892–3901

    Article  PubMed  CAS  Google Scholar 

  49. Papadopoulos K, Lee P, Singhal S, Holahan J, Vesole D, Rosen S, Kunkel L, Zojwalla N, Hannah A, Siegel D (2011) A phase 1b/2 study of prolonged infusion carfilzomib in patients with relapsed and/or refractory (R/R) multiple myeloma: updated efficacy and tolerability from the completed 20/56mg/m2 expansion cohort of PX-171-007. Blood 118(21):2930

    Google Scholar 

  50. Badros AZ, Vij R, Martin T, Zonder JA, Kunkel L, Wang Z, Lee S, Wong AF, Niesvizky R (2013) Carfilzomib in multiple myeloma patients with renal impairment: pharmacokinetics and safety. Leukemia 27(8):1707–1714

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Wang M, Martin T, Bensinger W, Alsina M, Siegel D, Kavalerchik E, Niesvizky R (2013) Final results from the phase Ib/II study (PX-171-006) of carfilzomib, lenalidomide, and low-dose dexamethasone (CRd) in patients with relapsed or progressive multiple myeloma. J Clin Oncol 31:(suppl; abstr 8529)

    Google Scholar 

  52. Dimopoulos M, Spencer A, Attal M, Prince HM, Harousseau JL, Dmoszynska A, San Miguel J, Hellmann A, Facon T, Foa R, Corso A, Masliak Z, Olesnyckyj M, Yu Z, Patin J, Zeldis JB, Knight RD (2007) Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 357(21):2123–2132

    Article  PubMed  CAS  Google Scholar 

  53. Weber DM, Chen C, Niesvizky R, Wang M, Belch A, Stadtmauer EA, Siegel D, Borrello I, Rajkumar SV, Chanan-Khan AA, Lonial S, Yu Z, Patin J, Olesnyckyj M, Zeldis JB, Knight RD (2007) Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 357(21):2133–2142

    Article  PubMed  CAS  Google Scholar 

  54. Anderson K, Jagannath S, Jakubowiak S, Lonial S, Raje N, Alsina M, Ghobrial I, Knight R, Esseltine D, Richardson P (2009) Lenalidomide, bortezomib, and dexamethasone in relapsed/refractory multiple myeloma (MM): encouraging outcomes and tolerability in a phase II study J Clin Oncol 27 (15S):(suppl; abstr 8536)

    Google Scholar 

  55. Jakubowiak AJ, Dytfeld D, Griffith KA, Lebovic D, Vesole DH, Jagannath S, Al-Zoubi A, Anderson T, Nordgren B, Detweiler-Short K, Stockerl-Goldstein K, Ahmed A, Jobkar T, Durecki DE, McDonnell K, Mietzel M, Couriel D, Kaminski M, Vij R (2012) A phase 1/2 study of carfilzomib in combination with lenalidomide and low-dose dexamethasone as a frontline treatment for multiple myeloma. Blood 120(9):1801–1809

    Article  PubMed  CAS  Google Scholar 

  56. Richardson PG, Weller E, Lonial S, Jakubowiak AJ, Jagannath S, Raje NS, Avigan DE, Xie W, Ghobrial IM, Schlossman RL, Mazumder A, Munshi NC, Vesole DH, Joyce R, Kaufman JL, Doss D, Warren DL, Lunde LE, Kaster S, Delaney C, Hideshima T, Mitsiades CS, Knight R, Esseltine DL, Anderson KC (2010) Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood 116(5):679–686

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Shah JJ, Weber DM, Thomas SK, Alexanian R, Wang M, Qazilbash MH, Parmar S, Shah N, Bashir Q, Popat UR, Hilder B, Orlowski RZ (2012) Phase 1 study of the novel kinesin spindle protein inhibitor ARRY-520 + carfilzomib in patients with relapsed and/or refractory multiple myeloma. ASH Annual Meeting Abstracts 120(21):4082

    Google Scholar 

  58. Berdeja JG, Hart L, Lamar R, Murphy P, Morgan S, Flinn IW (2012) Phase I/II study of panobinostat and carfilzomib in patients (pts) with relapsed or refractory multiple myeloma (MM), interim phase I safety analysis. ASH Annual Meeting Abstracts 120(21):4048

    Google Scholar 

  59. Shah JJ, Thomas SK, Weber DM, Wang M, Alexanian R, Qazilbash MH, Bashir Q, Parmar S, Shah N, Popat UR, Orlowski RZ (2012) Phase 1/1b study of the efficacy and safety of the combination of panobinostat + carfilzomib in patients with relapsed and/or refractory multiple myeloma. ASH Annual Meeting Abstracts 120(21):4081

    Google Scholar 

  60. Shah JJ, Stadtmauer EA, Abonour R, Cohen AD, Bensinger WI, Gasparetto C, Kaufman JL, Lentzsch S, Vogl DT, Orlowski RZ, Kim EL, McKinley MB, Durie BGM (2012) A multi-center phase I/II trial of carfilzomib and pomalidomide with dexamethasone (Car-Pom-d) in patients with relapsed/refractory multiple myeloma. ASH Annual Meeting Abstracts 120(21):74

    Google Scholar 

  61. Sonneveld P, Hacker E, Zweegman S, Kersten MJ, Vellenga E, van Marwijk-Kooy M, de Weerdt O, Lonergan S, Palumbo A, Lokhorst HM (2011) Carfilzomib combined with thalidomide and dexamethasone (CARTHADEX) as induction treatment prior to high-dose melphalan (HDM) in newly diagnosed patients with multiple myeloma (MM). a trial of the European Myeloma Network EMN. ASH Annual Meeting Abstracts 118(21):633

    Google Scholar 

  62. Mikhael JR, Reeder CB, Libby EN III, Costa LJ, Bergsagel PL, Buadi F, Mayo A, Gano K, Wolf C, Dueck AC, Stewart AK (2012) Results from the phase II dose expansion of cyclophosphamide, carfilzomib, thalidomide and dexamethasone (CYCLONE) in patients with newly diagnosed multiple myeloma. ASH Annual Meeting Abstracts 120(21):445

    Google Scholar 

  63. Palumbo A, Bringhen S, Villani O, Siniscalchi A, Russo E, Uccello G, Cerrato C, Gilestro M, Rossi D, Boccadoro M (2012) Carfilzomib, cyclophosphamide and dexamethasone (CCd) for newly diagnosed multiple myeloma (MM) patients. ASH Annual Meeting Abstracts 120(21):730

    Google Scholar 

  64. Kolb B, Hulin C, Caillot D, Benboubker L, Tiab M, Blin M, Leleu X, Roussel M, Attal M, Facon T, Moreau P (2012) Phase I/II study of carfilzomib plus melphalan-prednisone (CMP) in elderly patients with de novo multiple myeloma. J Clin Oncol 30:(suppl; abstr 8009)

    Google Scholar 

  65. Papadopoulos K, Lee P, Singhal S, Holahan J, Tolcher A, Patnaik A, Vesole D, Rosen S, Rosen P, Bilotti E, Woo T, Lee S, Hannah A, Siegel D (2011) PX-171-007: a phase 1b study of evaluation the safety and efficacy of a 30-min IV infusion of carfilzomib in patients with relapsed and/or refractory (R/R) multiple myeloma (MM). Haematology 96(S2):374

    Google Scholar 

Download references

Acknowledgments

R.Z.O. would like to acknowledge support from the National Cancer Institute in the form of The MD Anderson Cancer Center SPORE in Multiple Myeloma (P50 CA142509) and the Southwest Oncology Group (U10 CA032102). H.C.L. would like to acknowledge support from the Conquer Cancer Foundation (American Society of Clinical Oncology Young Investigator Award).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Z. Orlowski M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lee, H.C., Orlowski, R.Z. (2014). Overcoming Bortezomib Resistance: A Review of the Second-Generation Proteasome Inhibitor Carfilzomib in the Treatment of Multiple Myeloma. In: Dou, Q. (eds) Resistance to Proteasome Inhibitors in Cancer. Resistance to Targeted Anti-Cancer Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-319-06752-0_3

Download citation

Publish with us

Policies and ethics