Skip to main content

Imaging Coronary Atherosclerosis and Vulnerable Plaques with Optical Coherence Tomography

  • Reference work entry
Optical Coherence Tomography

Abstract

Intracoronary optical coherence tomography (OCT) is an invasive microscopic imaging technology that has been developed for the identification of vulnerable plaque. OCT acquires cross-sectional images of tissue reflectance and, since it may be implemented through an optical fiber probe, it is readily adaptable to coronary catheters for insertion into coronary arteries and circumferential imaging of arterial pathology. The first investigation of vascular optical coherence tomography ex vivo demonstrated the potential of this technique to identify arterial microstructure. Subsequent development of OCT technology enabled image acquisition at rates sufficient for intracoronary imaging in human patients. In this chapter, we review studies conducted with this technology at the Massachusetts General Hospital (MGH). Results from these studies show that a wide variety of microscopic features, including those associated with TCFAs, can be identified by OCT imaging both ex vivo and in living human patients. These findings suggest that this technology will play an important role in improving our understanding of coronary artery disease, guiding local therapy, and decreasing themortality of AMI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Heart Association: Heart and Stroke Facts: 1996, Statistical Supplement

    Google Scholar 

  2. American Heart Association: Heart Disease and Stroke Statistics – 2013 Update

    Google Scholar 

  3. F.D. Kolodgie, A.P. Burke, A. Farb, H.K. Gold, J. Yuan, J. Narula, A.V. Finn, R. Virmani, The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr. Opin. Cardiol. 16, 285–292 (2001)

    Article  Google Scholar 

  4. R. Virmani, F.D. Kolodgie, A.P. Burke, A. Farb, S.M. Schwartz, Lesions from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 20, 1262–1275 (2000)

    Article  Google Scholar 

  5. R. Virmani, A.P. Burke, A. Farb, F.D. Kolodgie, Pathology of the unstable plaque. Prog. Cardiovasc. Dis. 44, 349–356 (2002)

    Article  Google Scholar 

  6. M.J. Davies, Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley white lecture 1995. Circulation 94, 2013–2020 (1996)

    Article  Google Scholar 

  7. E. Falk, Why do plaques rupture? Circulation 86, III30–III42 (1992)

    Google Scholar 

  8. M.J. Davies, Detecting vulnerable coronary plaques. Lancet 347, 1422–1423 (1996)

    Article  Google Scholar 

  9. G.K. Sukhova, U. Schonbeck, E. Rabkin, F.J. Schoen, A.R. Poole, R.C. Billinghurst, P. Libby, Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation 99, 2503–2509 (1999)

    Article  Google Scholar 

  10. G.C. Cheng, H.M. Loree, R.D. Kamm, M.C. Fishbein, R.T. Lee, Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 87, 1179–1187 (1993)

    Article  Google Scholar 

  11. R.T. Lee, A.J. Grodzinsky, E.H. Frank, R.D. Kamm, F.J. Schoen, Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83, 1764–1770 (1991)

    Article  Google Scholar 

  12. P.R. Moreno, V.H. Bernardi, J. Lopez-Cuellar, A.M. Murcia, I.F. Palacios, H.K. Gold, R. Mehran, S.K. Sharma, Y. Nemerson, V. Fuster, J.T. Fallon, Macrophages, smooth muscle cells, and tissue factor in unstable angina. Implications for cell-mediated thrombogenicity in acute coronary syndromes. Circulation 94, 3090–3097 (1996)

    Article  Google Scholar 

  13. A.G. Zaman, G. Helft, S.G. Worthley, J.J. Badimon, The role of plaque rupture and thrombosis in coronary artery disease. Atherosclerosis 149, 251–266 (2000)

    Article  Google Scholar 

  14. A.C. van der Wal, A.E. Becker, C.M. van der Loos, P.K. Das, Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89, 36–44 (1994)

    Article  Google Scholar 

  15. A. Farb, A.P. Burke, A.L. Tang, T.Y. Liang, P. Mannan, J. Smialek, R. Virmani, Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 93, 1354–1363 (1996)

    Article  Google Scholar 

  16. E. Arbustini, M. Grasso, M. Diegoli, A. Pucci, M. Bramerio, D. Ardissino, L. Angoli, S. de Servi, E. Bramucci, A. Mussini et al., Coronary atherosclerotic plaques with and without thrombus in ischemic heart syndromes: a morphologic, immunohistochemical, and biochemical study. Am. J. Cardiol. 68, 36B–50B (1991)

    Article  Google Scholar 

  17. G. Rioufol, G. Finet, I. Ginon, X. Andre-Fouet, R. Rossi, E. Vialle, E. Desjoyaux, G. Convert, J.F. Huret, A. Tabib, Multiple atherosclerotic plaque rupture in acute coronary syndrome: a three-vessel intravascular ultrasound study. Circulation 106, 804–808 (2002)

    Article  Google Scholar 

  18. L.M. Biasucci, G. Liuzzo, C. Colizzi, A. Maseri, The role of cytokines in unstable angina. Expert Opin. Investig. Drugs 7, 1667–1672 (1998)

    Article  Google Scholar 

  19. W. Cascells, M. Naghavi, J.T. Willerson, Vulnerable atherosclerotic plaque: a multifocal disease. Circulation 107, 2072–2075 (2003)

    Article  Google Scholar 

  20. R. Krams, D. Segers, B.M. Gourabi, W. Maat, C. Cheng, C. van Pelt, L.C. van Damme, P. de Feyter, T. van der Steen, C.L. de Korte, P.W. Serruys, Inflammation and atherosclerosis: mechanisms underlying vulnerable plaque. J. Interv. Cardiol. 16, 107–113 (2003)

    Article  Google Scholar 

  21. A. Maseri, V. Fuster, Is there a vulnerable plaque? Circulation 107, 2068–2071 (2003)

    Article  Google Scholar 

  22. D.J. Kereiakes, The emperor’s clothes: in search of the vulnerable plaque. Circulation 107, 2076–2077 (2003)

    Article  Google Scholar 

  23. P.G. Yock, P.J. Fitzgerald, Intravascular ultrasound: state of the art and future directions. Am. J. Cardiol. 81, 27E–32E (1998)

    Article  Google Scholar 

  24. M. Yamaguchi, M. Terashima, K. Awano, M. Kijima, S. Nakatani, S. Daikoku, K. Ito, Y. Yasamura, K. Miyatake, Morphology of vulnerable coronary plaques: insights from follow-up of patients examined by intravascular ultrasound before an acute coronary event. J. Am. Coll. Cardiol. 35, 106–111 (2000)

    Article  Google Scholar 

  25. A.J. Martin, L.K. Ryan, A.I. Gotlieb, R.M. Henkelman, F.S. Foster, Arterial imaging: comparison of high-resolution US and MR imaging with histologic correlation. Radiographics 17, 189–202 (1997)

    Article  Google Scholar 

  26. P. Schoenhagen, S.E. Nissen, Understanding coronary artery disease: tomographic imaging with intravascular ultrasound. Heart 88, 91–96 (2002)

    Article  Google Scholar 

  27. J.M. Tobis, J. Mallery, D. Mahon, K. Lehmann, P. Zalesky, J. Griffith, J. Gessert, M. Moriuchi, M. McRae, M.-L. Dwyer, N. Greep, W.L. Henry, Intravascular ultrasound imaging of human coronary arteries in vivo: analysis of tissue characterizations with comparison to in vitro histological specimens. Circulation 83, 913–926 (1991)

    Article  Google Scholar 

  28. F. Prati, E. Arbustini, A. Labellarte, B. Dal Bello, L. Sommariva, M.T. Mallus, A. Pagano, A. Boccanelli, Correlation between high frequency intravascular ultrasound and histomorphology in human coronary arteries. Heart 85, 567–570 (2001)

    Article  Google Scholar 

  29. J.A. Rumberger, T. Behrenbeck, J.F. Breen, P.F. Sheedy 2nd, Coronary calcification by electron beam computed tomography and obstructive coronary artery disease: a model for costs and effectiveness of diagnosis as compared with conventional cardiac testing methods. J. Am. Coll. Cardiol. 33, 453–462 (1999)

    Article  Google Scholar 

  30. N.D. Wong, A. Vo, D. Abrahamson, J.M. Tobis, H. Eisenberg, R.C. Detrano, Detection of coronary artery calcium by ultrafast computed tomography and its relation to clinical evidence or coronary artery disease. Am. J. Cardiol. 73, 223–227 (1994)

    Article  Google Scholar 

  31. M.J. Budoff, B.H. Brundage, Electron beam computed tomography: screening for coronary artery disease. Clin. Cardiol. 22, 554–558 (1999)

    Article  Google Scholar 

  32. M. Naghavi, M. Madjid, M.R. Khan, R.M. Mohammadi, J.T. Willerson, S.W. Casscells, New developments in the detection of vulnerable plaque. Curr. Atheroscler. Rep. 3, 125–135 (2001)

    Article  Google Scholar 

  33. F.M. Baer, P. Theissen, J. Crnac, M. Schmidt, M. Jochims, H. Schicha, MRI assessment of coronary artery disease. Rays 24, 46–59 (1999)

    Google Scholar 

  34. J.F. Toussaint, G.M. LaMuraglia, J.F. Southern, V. Fuster, H.L. Kantor, Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 94, 932–938 (1996)

    Article  Google Scholar 

  35. G. Helft, S.G. Worthley, V. Fuster, Z.A. Fayad, A.G. Zaman, R. Corti, J.T. Fallon, J.J. Badimon, Progression and regression of atherosclerotic lesions: monitoring with serial noninvasive magnetic resonance imaging. Circulation 105, 993–998 (2002)

    Article  Google Scholar 

  36. J.C. Machado, F.S. Foster, Ultrasonic integrated backscatter coefficient profiling of human coronary arteries in vitro. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 17–27 (2001)

    Article  Google Scholar 

  37. M.P. Urbani, E. Picano, G. Parenti, A. Mazzarisi, L. Fiori, M. Paterni, G. Pelosi, L. Landini, In vivo radiofrequency-based ultrasonic tissue characterization of the atherosclerotic plaque. Stroke 24, 1507–1512 (1993)

    Article  Google Scholar 

  38. A. König, M.P. Margolis, R. Virmani, D. Holmes, V. Klauss, Technology insight: in vivo coronary plaque classification by intravascular ultrasonography radiofrequency analysis. Nat. Clin. Pract. Cardiovasc. Med. 5, 219–229 (2008)

    Article  Google Scholar 

  39. G.A. Rodriguez-Granillo, H.M. García-García, E.P. Mc Fadden, M. Valgimigli, J. Aoki, P. de Feyter, P.W. Serruys, In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis. J. Am. Coll. Cardiol. 46, 2038–2042 (2005)

    Article  Google Scholar 

  40. C.L. de Korte, A.F.W. van der Steen, E.I. Cespedes, G. Pasterkamp, S.G. Carlier, F. Mastik, A.H. Schoneveld, P.W. Serruys, N. Bom, Characterization of plaque components and vulnerability with intravascular ultrasound elastography. Phys. Med. Biol. 45, 1465–1475 (2000)

    Article  Google Scholar 

  41. Y. Ueda, M. Asakura, O. Yamaguchi, A. Hirayama, M. Hori, K. Kodama, The healing process of infarct-related plaques. J. Am. Coll. Cardiol. 38, 1916–1922 (2001)

    Article  Google Scholar 

  42. M. Asakura, Y. Ueda, O. Yamaguchi, T. Adachi, A. Hirayama, M. Hori, K. Kodama, Extensive development of vulnerable plaques as a pan-coronary process in patients with myocardial infarction: an angioscopic study. J. Am. Coll. Cardiol. 37, 1284–1288 (2001)

    Article  Google Scholar 

  43. K. Kodama, A. Hirayama, Y. Ueda, Usefulness of coronary angioscopy for the evaluation of hyperlipidemia. Nippon Rinsho Jpn. J. Clin. Med. 60, 927–932 (2002)

    Google Scholar 

  44. K. Mizuno, H. Nakamura, Percutaneous coronary angioscopy: present role and future direction. Ann. Med. 25, 1–2 (1993)

    Article  Google Scholar 

  45. S. Waxman, Characterization of the unstable lesion by angiography, angioscopy, and intravascular ultrasound. Cardiol. Clin. 17, 295–305 (1999). viii

    Article  Google Scholar 

  46. P.R. Moreno, R.A. Lodder, K.R. Purushothaman, W.E. Charash, W.N. O’Connor, J.E. Muller, Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 105, 923–927 (2002)

    Article  Google Scholar 

  47. A. Christov, R.M. Korol, E. Dai, L. Liu, H. Guan, M.A. Bernards, P.B. Cavers, D. Susko, A. Lucas, In vivo optical analysis of quantitative changes in collagen and elastin during arterial remodeling. Photochem. Photobiol. 81, 457–466 (2005)

    Article  Google Scholar 

  48. L. Marcu, Q. Fang, J.A. Jo, T. Papaioannou, A. Dorafshar, T. Reil, J.H. Qiao, J.D. Baker, J.A. Freischlag, M.C. Fishbein, In vivo detection of macrophages in a rabbit atherosclerotic model by time-resolved laser-induced fluorescence spectroscopy. Atherosclerosis 181, 295–303 (2005)

    Article  Google Scholar 

  49. L. Marcu, M.C. Fishbein, J.M. Maarek, W.S. Grundfest, Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy. Arterioscler. Thromb. Vasc. Biol. 21, 1244–1250 (2001)

    Article  Google Scholar 

  50. T.J. Romer, J.F. Brennan 3rd, M. Fitzmaurice, M.L. Feldstein, G. Deinum, J.L. Myles, J.R. Kramer, R.S. Lees, M.S. Feld, Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy. Circulation 97, 878–885 (1998)

    Article  Google Scholar 

  51. H.P. Buschman, G. Deinum, J.T. Motz, M. Fitzmaurice, J.R. Kramer, A. van der Laarse, A.V. Bruschke, M.S. Feld, Raman microspectroscopy of human coronary atherosclerosis: biochemical assessment of cellular and extracellular morphologic structures in situ. Cardiovasc. Pathol. 10, 69–82 (2001)

    Article  Google Scholar 

  52. W. Casscells, B. Hathorn, M. David, T. Krabach, W.K. Vaughn, H.A. McAllister, G. Bearman, J.T. Willerson, Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis. Lancet 347, 1447–1451 (1996)

    Article  Google Scholar 

  53. C. Stefanadis, K. Toutouzas, E. Tsiamis, C. Stratos, M. Vavuranakis, I. Kallikazaros, D. Panagiotakos, P. Toutouzas, Increased local temperature in human coronary atherosclerotic plaques: an independent predictor of clinical outcome in patients undergoing a percutaneous coronary intervention. J. Am. Coll. Cardiol. 37, 1277–1283 (2001)

    Article  Google Scholar 

  54. F.J. van der Meer, D.J. Faber, D.M. Baraznji Sassoon, M.C. Aalders, G. Pasterkamp, T.G. van Leeuwen, Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography. IEEE Trans. Med. Imaging 24, 1369–1376 (2005)

    Article  Google Scholar 

  55. N.A. Patel, D.L. Stamper, M.E. Brezinski, Review of the ability of optical coherence tomography to characterize plaque, including a comparison with intravascular ultrasound. Cardiovasc. Intervent. Radiol. 28, 1–9 (2005)

    Article  Google Scholar 

  56. E. Regar, J.A. Schaar, E. Mont, R. Virmani, P.W. Serruys, Optical coherence tomography. Cardiovasc. Radiat. Med. 4, 198–204 (2003)

    Article  Google Scholar 

  57. H. Yabushita, B.E. Bouma, S.L. Houser, H.T. Aretz, I.K. Jang, K. Schlendorf, C.R. Kauffman, M. Shishkov, D.H. Kang, E.F. Halpern, G.J. Tearney, Characterization of human atherosclerosis by optical coherence tomography. Circulation 106, 1640–1645 (2002)

    Article  Google Scholar 

  58. G.J. Tearney, S.A. Boppart, B.E. Bouma, M.E. Brezinski, N.J. Weissman, J.F. Southern, J.G. Fujimoto, Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography. Opt. Lett. 21, 543–545 (1996)

    Article  ADS  Google Scholar 

  59. M.E. Brezinski, G.J. Tearney, B.E. Bouma, J.A. Izatt, M.R. Hee, E.A. Swanson, J.F. Southern, J.G. Fujimoto, Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology. Circulation 93, 1206–1213 (1996)

    Article  Google Scholar 

  60. G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitris, J.F. Southern, J.G. Fujimoto, In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037–2039 (1997)

    Article  Google Scholar 

  61. B.E. Bouma, G.J. Tearney, Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography. Opt. Lett. 24, 531–533 (1999)

    Article  ADS  Google Scholar 

  62. I.K. Jang, B.E. Bouma, D.H. Kang, S.J. Park, S.W. Park, K.B. Seung, K.B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S.L. Houser, H.T. Aretz, G.J. Tearney, Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography. J. Am. Coll. Cardiol. 39, 604–609 (2002)

    Article  Google Scholar 

  63. G.J. Tearney, B.E. Bouma, J.G. Fujimoto, Phase and group delay relationships for the phase control rapid-scanning optical delay line. Opt. Lett. 22, 1811–1813 (1997)

    Article  ADS  Google Scholar 

  64. M. Shishkov, B.E. Bouma, I.K. Jang, H.T. Aretz, S.L. Houser, T.J. Brady, K. Schlendorf, G.J. Tearney, presented at the Optical Society of America Biomedical Topical Meetings 2000, Miami, 2000

    Google Scholar 

  65. P.R. Moreno, E. Falk, I.F. Palacios, J.B. Newell, V. Fuster, J.T. Fallon, Macrophage infiltration in acute coronary syndromes: implications for plaque rupture. Circulation 90, 775–778 (1994)

    Article  Google Scholar 

  66. C.L. Lendon, M.J. Davies, G.V. Born, P.D. Richardson, Atherosclerotic plaque caps are locally weakened when macrophage density is increased. Atherosclerosis 87, 87–90 (1991)

    Article  Google Scholar 

  67. M.J. Davies, P.D. Richardson, N. Woolf, D.R. Katz, J. Mann, Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br. Heart J. 69, 377–381 (1993)

    Article  Google Scholar 

  68. G.J. Tearney, H. Yabushita, S.L. Houser, H.T. Aretz, I.K. Jang, K. Schlendorf, C.R. Kauffman, M. Shishkov, E.F. Halpern, B.E. Bouma, Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107, 113–119 (2003)

    Article  Google Scholar 

  69. S. Goto, S. Handa, Coronary thrombosis. Effects of blood flow on the mechanism of thrombus formation. Jpn. Heart J. 39, 579–596 (1998)

    Article  Google Scholar 

  70. I.K. Jang, M.J. Hursting, When heparins promote thrombosis: review of heparin-induced thrombocytopenia. Circulation 111, 2671–2683 (2005)

    Article  Google Scholar 

  71. H.M. Loree, A.J. Grodzinsky, S.Y. Park, L.J. Gibson, R.T. Lee, Static circumferential tangential modulus of human atherosclerotic tissue. J. Biomech. 27, 195–204 (1994)

    Article  Google Scholar 

  72. G.J. Tearney, I.K. Jang, B.E. Bouma, Evidence of cholesterol crystals in atherosclerotic plaque by optical coherence tomographic (OCT) imaging. Eur. Heart J. 24, 1462 (2003)

    Article  Google Scholar 

  73. P.R. Moreno, K.R. Purushothaman, V. Fuster, D. Echeverri, H. Truszczynska, S.K. Sharma, J.J. Badimon, W.N. O’Connor, Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation 110, 2032–2038 (2004)

    Article  Google Scholar 

  74. M. Vorpahl, M. Nakano, R. Virmani, Small black holes in optical frequency domain imaging matches intravascular neoangiogenesis formation in histology. Eur. Heart J. 31, 1889 (2010)

    Article  Google Scholar 

  75. I.K. Jang, G. Tearney, B. Bouma, Visualization of tissue prolapse between coronary stent struts by optical coherence tomography: comparison with intravascular ultrasound. Circulation 104, 2754 (2001)

    Article  Google Scholar 

  76. I.K. Jang, G.J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H.T. Aretz, E.F. Halpern, B.E. Bouma, In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111, 1551–1555 (2005)

    Article  Google Scholar 

  77. C.P. Cannon, A. Battler, R.G. Brindis, J.L. Cox, S.G. Ellis, N.R. Every, J.T. Flaherty, R.A. Harrington, H.M. Krumholz, M.L. Simoons, F.J. Van De Werf, W.S. Weintraub, K.R. Mitchell, S.L. Morrisson, R.G. Brindis, H.V. Anderson, D.S. Cannom, W.R. Chitwood, J.E. Cigarroa, R.L. Collins-Nakai, S.G. Ellis, R.J. Gibbons, F.L. Grover, P.A. Heidenreich, B.K. Khandheria, S.B. Knoebel, H.L. Krumholz, D.J. Malenka, D.B. Mark, C.R. McKay, E.R. Passamani, M.J. Radford, R.N. Riner, J.B. Schwartz, R.E. Shaw, R.J. Shemin, D.B. Van Fossen, E.D. Verrier, M.W. Watkins, D.R. Phoubandith, T. Furnelli, American College of Cardiology key data elements and definitions for measuring the clinical management and outcomes of patients with acute coronary syndromes. A report of the American College of Cardiology Task Force on Clinical Data Standards (Acute Coronary Syndromes Writing Committee). J. Am. Coll. Cardiol. 38, 2114–2130 (2001)

    Article  Google Scholar 

  78. B.D. MacNeill, B.E. Bouma, H. Yabushita, I.K. Jang, G.J. Tearney, Intravascular optical coherence tomography: cellular imaging. J. Nucl. Cardiol. 12, 460–465 (2005)

    Article  Google Scholar 

  79. B.D. MacNeill, I.K. Jang, B.E. Bouma, N. Iftimia, M. Takano, H. Yabushita, M. Shishkov, C.R. Kauffman, S.L. Houser, H.T. Aretz, D. DeJoseph, E.F. Halpern, G.J. Tearney, Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J. Am. Coll. Cardiol. 44, 972–979 (2004)

    Article  Google Scholar 

  80. T. Kubo, T. Imanishi, S. Takarada, A. Kuroi, S. Ueno, T. Yamano, T. Tanimoto, Y. Matsuo, T. Masho, H. Kitabata, K. Tsuda, Y. Tomobuchi, T. Akasaka, Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J. Am. Coll. Cardiol. 50, 933–939 (2007)

    Article  Google Scholar 

  81. D. Matsumoto, J. Shite, T. Shinke, H. Otake, Y. Tanino, D. Ogasawara, T. Sawada, O.L. Paredes, K. Hirata, M. Yokoyama, Neointimal coverage of sirolimus-eluting stents at 6-month follow-up: evaluated by optical coherence tomography. Eur. Heart J. 28, 961–967 (2007)

    Article  Google Scholar 

  82. T. Sawada, J. Shite, T. Shinke, S. Watanabe, H. Otake, D. Matsumoto, Y. Imuro, D. Ogasawara, O.L. Paredes, M. Yokoyama, Persistent malapposition after implantation of sirolimus-eluting stent into intramural coronary hematoma: optical coherence tomography observations. Circ. J. 70, 1515–1519 (2006)

    Article  Google Scholar 

  83. S. Uemura, K. Ishigami, T. Soeda, S. Okayama, J.H. Sung, H. Nakagawa, S. Somekawa, Y. Takeda, H. Kawata, M. Horii, Y. Saito, Thin-cap fibroatheroma and microchannel findings in optical coherence tomography correlate with subsequent progression of coronary atheromatous plaques. Eur. Heart J. 33, 78–85 (2012)

    Article  Google Scholar 

  84. K. Inoue, K. Abe, K. Ando, S. Shirai, K. Nishiyama, M. Nakanishi, T. Yamada, K. Sakai, Y. Nakagawa, N. Hamasaki, T. Kimura, M. Nobuyoshi, T.A. Miyamoto, Pathological analyses of long-term intracoronary Palmaz-Schatz stenting; is its efficacy permanent? Cardiovasc. Pathol. 13, 109–115 (2004)

    Article  Google Scholar 

  85. M. Takano, M. Yamamoto, S. Inami, D. Murakami, T. Ohba, Y. Seino, K. Mizuno, Appearance of lipid-laden intima and neovascularization after implantation of bare-metal stents extended late-phase observation by intracoronary optical coherence tomography. J. Am. Coll. Cardiol. 55, 26–32 (2009)

    Article  Google Scholar 

  86. M. Kashiwagi, H. Kitabata, A. Tanaka, K. Okochi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Hirata, M. Mizukoshi, T. Imanishi, T. Akasaka, Very late clinical cardiac event after BMS implantation: in vivo optical coherence tomography examination. JACC Cardiovasc. Imaging 3, 525–527 (2010)

    Article  Google Scholar 

  87. G. Guagliumi, V. Sirbu, G. Musumeci, R. Gerber, G. Biondi-Zoccai, H. Ikejima, E. Ladich, N. Lortkipanidze, A. Matiashvili, O. Valsecchi, R. Virmani, G.W. Stone, Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: findings from optical coherence tomography and intravascular ultrasound imaging. JACC Cardiovasc. Interv. 5, 12–20 (2012)

    Article  Google Scholar 

  88. F. Prati, E. Regar, G.S. Mintz, E. Arbustini, C. Di Mario, I.K. Jang, T. Akasaka, M. Costa, G. Guaqliumi, E. Grube, Y. Ozaki, F. Pinto, P.W. Serruys, Expert’s OCT Review Document, Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur. Heart J. 31, 401–415 (2010)

    Article  Google Scholar 

  89. H. Kataiwa, A. Tanaka, H. Kitabata, H. Matsumoto, M. Kashiwagi, A. Kuroi, H. Ikejima, H. Tsujioka, K. Okochi, T. Tanimoto, T. Yamano, S. Takarada, N. Nakamura, T. Kubo, M. Mizukoshi, K. Hirata, T. Imanishi, T. Akasaka, Head to head comparison between the conventional balloon occlusion method and the non-occlusion method for optical coherence tomography. Int. J. Cardiol. 21, 186–190 (2011)

    Article  Google Scholar 

  90. S.H. Yun, G.J. Tearney, B.J. Vakoc, M. Shishkov, W.Y. Oh, A.E. Desjardins, M.J. Suter, R.C. Chan, J.A. Evans, J.K. Jang, N.S. Nishioka, J.F. de Boer, B.E. Bouma, Comprehensive volumetric optical microscopy in vivo. Nat. Med. 12, 1429–1433 (2006)

    Article  Google Scholar 

  91. G.J. Tearney, S. Waxman, M. Shishkov, B.J. Vakoc, M.J. Suter, M.I. Freilich, A.E. Desjardins, W.Y. Oh, L.A. Bartlett, M. Rosenberg, B.E. Bouma, Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. JACC Cardiovasc. Imaging 1, 752–761 (2008)

    Article  Google Scholar 

  92. F. Imola, M.T. Mallus, V. Ramazzotti, A. Manzoli, A. Pappalardo, A. Di Giorgio, M. Albertucci, F. Prati, Safety and feasibility of frequency domain optical coherence tomography to guide decision making in percutaneous coronary intervention. EuroIntervention 6, 575–581 (2010)

    Article  Google Scholar 

  93. F. Prati, L. Di Vito, G. Biondi-Zoccai, M. Occhipinti, A. La Manna, C. Tamburino, F. Burzotta, C. Trani, I. Porto, V. Ramazzotti, F. Imola, A. Manzoli, L. Materia, A. Cremonesi, M. Albertucci, Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l’Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention 8, 823–829 (2012)

    Article  Google Scholar 

  94. N. Viceconte, P.H. Chan, E.A. Barrero, L. Ghilencea, A. Lindsay, N. Foin, C. Di Mario, Frequency domain optical coherence tomography for guidance of coronary stenting. Int. J. Cardiol. 166, 722–728 (2013)

    Article  Google Scholar 

  95. J. Yin, H.C. Yang, X. Li, J. Zhang, Q. Zhou, C. Hu, K.K. Shung, Z. Chen, Integrated intravascular optical coherence tomography ultrasound imaging system. J. Biomed. Opt. 15, 010512 (2010)

    Article  ADS  Google Scholar 

  96. G.J. Tearney, E. Regar, T. Akasaka, T. Adriaenssens, P. Barlis, H.G. Bezerra, B. Bouma, N. Bruining, J.M. Cho, S. Chowdhary, M.A. Costa, R. de Silva, J. Dijkstra, C. Di Mario, D. Dudek, E. Falk, M.D. Feldman, P. Fitzgerald, H.M. Garcia-Garcia, N. Gonzalo, J.F. Granada, G. Guagliumi, N.R. Holm, Y. Honda, F. Ikeno, M. Kawasaki, J. Kochman, L. Koltowski, T. Kubo, T. Kume, H. Kyono, C.C. Lam, G. Lamouche, D.P. Lee, M.B. Leon, A. Maehara, O. Manfrini, G.S. Mintz, K. Mizuno, M.A. Morel, S. Nadkarni, H. Okura, H. Otake, A. Pietrasik, F. Prati, L. Räber, M.D. Radu, J. Rieber, M. Riga, A. Rollins, M. Rosenberg, V. Sirbu, P.W. Serruys, K. Shimada, T. Shinke, J. Shite, E. Siegel, S. Sonoda, M. Suter, S. Takarada, A. Tanaka, M. Terashima, T. Thim, S. Uemura, G.J. Ughi, H.M. van Beusekom, A.F. van der Steen, G.A. van Es, G. van Soest, R. Virmani, S. Waxman, N.J. Weissman, G. Weisz, International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT), Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J. Am. Coll. Cardiol. 59, 1058–1072 (2012)

    Article  Google Scholar 

  97. J. Yin, X. Li, J. Jing, J. Li, D. Mukai, S. Mahon, A. Edris, K. Hoang, K.K. Shung, M. Brenner, J. Narula, Q. Zhou, Z. Chen, Novel combined miniature optical coherence tomography ultrasound probe for in vivo intravascular imaging. J. Biomed. Opt. 16, 060505 (2011)

    Article  ADS  Google Scholar 

  98. H. Yoo, J.W. Kim, M. Shishkov, E. Namati, T. Morse, R. Shubochkin, J.R. McCarthy, V. Ntziachristos, B.E. Bouma, F.A. Jaffer, G.J. Tearney, Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat. Med. 17, 1680–1684 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo J. Tearney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Tearney, G.J., Jang, IK., Kashiwagi, M., Bouma, B.E. (2015). Imaging Coronary Atherosclerosis and Vulnerable Plaques with Optical Coherence Tomography. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_71

Download citation

Publish with us

Policies and ethics