Skip to main content

Bottlenecks in Proteomics

  • Chapter
  • First Online:
Advancements of Mass Spectrometry in Biomedical Research

Abstract

Mass spectrometry (MS) is the core for advanced methods in proteomic experiments. When effectively used, proteomics may provide extensive information about proteins and their post-translational modifications, as well as their interaction partners. However, there are also many problems that one can encounter during a proteomic experiment, including, but not limited to sample preparation, sample fractionation, sample analysis, data analysis & interpretation, and biological significance. Here we discuss some of the problems that researchers should be aware of when performing a proteomic experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Darie CC, Shetty V, Spellman DS, Zhang G, Xu C, Cardasis HL, Blais S, Fenyo D, Neubert TA (2008) Blue native PAGE and mass spectrometry analysis of the ephrin stimulation-dependent protein-protein interactions in NG108-EphB2 cells. Applications of Mass Spectrometry in Life Safety, NATO Science for Peace and Security Series. Springer, Düsseldorf, Germany

    Google Scholar 

  2. Ngounou Wetie AG et al (2012) Investigation of stable and transient protein-protein interactions: past, present, and future. Proteomics 13(3–4):538–557

    Google Scholar 

  3. Darie CC (2013) Mass spectrometry and its application in life sciences. Aust J Chem 66:1–2

    Article  Google Scholar 

  4. Ngounou Wetie AG et al (2013) Identification of post-translational modifications by mass spectrometry. Aust J Chem 66:734–748

    Article  Google Scholar 

  5. Ngounou Wetie AG et al (2014) Protein-protein interactions: switch from classical methods to proteomics and bioinformatics-based approaches. Cell Mol Life Sci 71:205–228

    Article  CAS  Google Scholar 

  6. Petrareanu C et al (2013) Comparative proteomics reveals novel components at the plasma membrane of differentiated HepaRG cells and different distribution in hepatocyte-and biliary-like cells. PLoS One 8(8):e71859

    Article  CAS  Google Scholar 

  7. Sokolowska I et al (2012) Proteomic analysis of plasma membranes isolated from undifferentiated and differentiated HepaRG cells. Proteome Sci 10(1):47

    Article  CAS  Google Scholar 

  8. Sokolowska I et al (2013) Applications of mass spectrometry in proteomics. Aust J Chem 66:721–733

    Article  CAS  Google Scholar 

  9. James P (1997) Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys 30(4):279–331

    Article  CAS  Google Scholar 

  10. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207

    Article  CAS  Google Scholar 

  11. Ngounou Wetie AG et al (2013) Automated mass spectrometry-based functional assay for the routine analysis of the secretome. J Lab Autom 18(1):19–29

    Article  CAS  Google Scholar 

  12. Sokolowska I et al (2012) Disulfide proteomics for identification of extracellular or secreted proteins. Electrophoresis 33(16):2527–2536

    Article  CAS  Google Scholar 

  13. Sokolowska I et al (2013) Mass spectrometry investigation of glycosylation on the NXS/T sites in recombinant glycoproteins. Biochim Biophys Acta 1834(8):1474–1483

    Article  CAS  Google Scholar 

  14. Sokolowska I et al (2012) Automatic determination of disulfide bridges in proteins. J Lab Autom 17(6):408–416

    CAS  Google Scholar 

  15. Sokolowska I et al (2011) Mass spectrometry for proteomics-based investigation of oxidative stress and heat shock proteins. In: Andreescu S, Hepel M (eds) Oxidative stress: diagnostics, prevention, and therapy. American Chemical Society, Washington, DC

    Google Scholar 

  16. Woods AG et al (2012) Potential biomarkers in psychiatry: focus on the cholesterol system. J Cell Mol Med 16(6):1184–1195

    Article  CAS  Google Scholar 

  17. Woods AG et al (2011) Blue native page and mass spectrometry as an approach for the investigation of stable and transient protein-protein interactions. In: Andreescu S, Hepel M (eds) Oxidative stress: diagnostics, prevention, and therapy. American Chemical Society, Washington, DC

    Google Scholar 

  18. Viswanathan S, Unlu M, Minden JS (2006) Two-dimensional difference gel electrophoresis. Nat Protoc 1(3):1351–1358

    Article  CAS  Google Scholar 

  19. Gygi SP et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    Article  CAS  Google Scholar 

  20. Ong SE et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  Google Scholar 

  21. Stemmann O et al (2001) Dual inhibition of sister chromatid separation at metaphase. Cell 107(6):715–726

    Article  CAS  Google Scholar 

  22. Anderson L, Hunter CL (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5(4):573–588

    Article  CAS  Google Scholar 

  23. Liu H, Sadygov RG, Yates JR III (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76(14):4193–4201

    Article  CAS  Google Scholar 

  24. Savitski MF, Savitski MM (2010) Unbiased detection of posttranslational modifications using mass spectrometry. Methods Mol Biol 673:203–210

    Article  CAS  Google Scholar 

  25. Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12(4):43R–56R

    Article  CAS  Google Scholar 

  26. Marino K et al (2010) A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol 6(10):713–723

    Article  CAS  Google Scholar 

  27. Tarrant MK, Cole PA (2009) The chemical biology of protein phosphorylation. Annu Rev Biochem 78:797–825

    Article  CAS  Google Scholar 

  28. Gorman JJ, Wallis TP, Pitt JJ (2002) Protein disulfide bond determination by mass spectrometry. Mass Spectrom Rev 21(3):183–216

    Article  CAS  Google Scholar 

  29. McAuley A et al (2008) Contributions of a disulfide bond to the structure, stability, and dimerization of human IgG1 antibody CH3 domain. Protein Sci 17(1):95–106

    Article  CAS  Google Scholar 

  30. Koh GC et al (2012) Analyzing protein-protein interaction networks. J Proteome Res 11(4):2014–2031

    Article  CAS  Google Scholar 

  31. De Las Rivas J, Fontanillo C (2010) Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6(6):e1000807

    Article  Google Scholar 

  32. Krause F (2006) Detection and analysis of protein-protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (membrane) protein complexes and supercomplexes. Electrophoresis 27(13):2759–2781

    Article  CAS  Google Scholar 

  33. Schagger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199(2):223–231

    Article  CAS  Google Scholar 

  34. Anderson LE, McClure WO (1973) An improved scintillation cocktail of high-solubilizing power. Anal Biochem 51(1):173–179

    Article  CAS  Google Scholar 

  35. O’Connell PB, Brady CJ (1976) Polyacrylamide gels with modified cross-linkages. Anal Biochem 76(l):63–73

    Article  Google Scholar 

  36. Hansen JN (1976) Electrophoresis of ribonucleic acid on a polyacrylamide gel which contains disulfide cross-linkages. Anal Biochem 76(l):37–44

    Article  CAS  Google Scholar 

  37. Bornemann S et al (2010) A novel polyacrylamide gel system for proteomic use offering controllable pore expansion by crosslinker cleavage. Electrophoresis 31(4):585–592

    Article  CAS  Google Scholar 

  38. Wei J, Buriak JM, Siuzdak G (1999) Desorption-ionization mass spectrometry on porous silicon. Nature 399(6733):243–246

    Article  CAS  Google Scholar 

  39. Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    Article  CAS  Google Scholar 

  40. Perkins DN et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567

    Article  CAS  Google Scholar 

  41. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989

    Article  CAS  Google Scholar 

  42. Tabb DL, McDonald WH, Yates JR III (2002) DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J Proteome Res 1(1):21–26

    Article  CAS  Google Scholar 

  43. Craig R, Beavis RC (2003) A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid Commun Mass Spectrom 17(20):2310–2316

    Article  CAS  Google Scholar 

  44. Pedrioli PG et al (2004) A common open representation of mass spectrometry data and its application to proteomics research. Nat Biotechnol 22(11):1459–1466

    Article  CAS  Google Scholar 

  45. Deutsch EW, Lam H, Aebersold R (2008) Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics. Physiol Genomics 33(1):18–25

    Article  CAS  Google Scholar 

  46. Deutsch E (2008) mzML: a single, unifying data format for mass spectrometer output. Proteomics 8(14):2776–2777

    Article  CAS  Google Scholar 

  47. Lenz EM et al (2005) Metabonomics with 1H NMR spectroscopy and liquid chromatography-mass spectrometry applied to the investigation of metabolic changes caused by gentamicin-induced nephrotoxicity in the rat. Biomarkers 10(2–3):173–187

    Article  CAS  Google Scholar 

  48. Kussmann M, Rezzi S, Daniel H (2008) Profiling techniques in nutrition and health research. Curr Opin Biotechnol 19(2):83–99

    Article  CAS  Google Scholar 

  49. Lescuyer P, Hochstrasser D, Rabilloud T (2007) How shall we use the proteomics toolbox for biomarker discovery? J Proteome Res 6(9):3371–3376

    Article  CAS  Google Scholar 

  50. Surinova S et al (2011) On the development of plasma protein biomarkers. J Proteome Res 10(1):5–16

    Article  CAS  Google Scholar 

  51. Drake RR et al (2011) Challenges to developing proteomic-based breast cancer diagnostics. OMICS 15(5):251–259

    Article  CAS  Google Scholar 

  52. Woods AG, Sokolowska I, Darie CC (2012) Identification of consistent alkylation of cysteine-less peptides in a proteomics experiment. Biochem Biophys Res Commun 419(2):305–308

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms. Laura Mulderig, Scott Nichols, and their colleagues (Waters Corporation) for their generous support in setting up the Proteomics Center at Clarkson University. CCD thanks Drs. Thomas A. Neubert (New York University), Belinda Willard (Cleveland Clinic), and Gregory Wolber & David Mclaughin (Eastman Kodak Company) for donation of a TofSpec2E MALDI-MS (each). C.C.D. thanks his advisors, Vlad Artenie, Wolfgang Haehnel, Paul M. Wassarman & Thomas A. Neubert for advice and support. This work was supported in part by the Keep a Breast Foundation (KEABF-375-35054), the Redcay Foundation (SUNY Plattsburgh), the Alexander von Humboldt Foundation, SciFund Challenge, the David A. Walsh fellowship, and by the U.S. Army research office (DURIP grant #W911NF-11-1-0304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costel C. Darie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wetie, A.G.N., Shipp, D.A., Darie, C.C. (2014). Bottlenecks in Proteomics. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-319-06068-2_29

Download citation

Publish with us

Policies and ethics