Skip to main content

Unbiased Detection of Posttranslational Modifications Using Mass Spectrometry

  • Protocol
  • First Online:
Computational Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 673))

Abstract

A major challenge in proteomics is to fully identify and characterize posttranslational modification (PTM) patterns present at any given time in cells, tissues, and organisms. Currently, the most frequently used method for identifying PTMs is tandem mass spectrometry combined with searching a protein sequence database. Although, database searching has been highly successful for the identification of proteins, it has a number of significant drawbacks for identification of modifications. The user needs to specify all expected modifications, and the search engine needs to consider all possible combinations of these modifications for all peptide sequences. If several potential modifications are considered, the search can take much longer than the data acquisition, creating a bottleneck in high-throughput analysis. In addition, the many possible assignments that need to be tested increase the noise and require better quality data for confident identification of modifications. Here, we describe a method for identifying both known and unknown PTM using mass spectrometry that does not suffer from these problems. The method is based on the observation that, in many samples, peptides are usually present both with and without modifications. By identifying the unmodified peptide with conventional database searches, the modified species of the peptide can be identified by searching for peptides with common and similar fragments as the unmodified peptide. After identifying both the modified and unmodified peptide, the elemental composition of the modification can be deduced if the mass accuracy of the precursor ion is sufficiently high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cohen P. (2000) The regulation of protein function by multisite phosphorylation – a 25 year update. Trends in Biochemical Sciences 25, 596–601.

    Article  PubMed  CAS  Google Scholar 

  2. Tyers M, Jorgensen P. (2000) Proteolysis and the cell cycle: with this RING I do thee destroy. Current Opinion in Genetics & Development 10, 54–64.

    Article  CAS  Google Scholar 

  3. Jensen ON. (2004) Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Current Opinion in Chemical Biology 8, 33–41.

    Article  PubMed  Google Scholar 

  4. Mann M, Jensen ON. (2003) Proteomic analysis of post-translational modifications. Nature Biotechnology 21, 255–61.

    Article  PubMed  CAS  Google Scholar 

  5. Blagoev B, Ong SE, Kratchmarova I, Mann M. (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nature Biotechnology 22, 1139–45.

    Article  PubMed  CAS  Google Scholar 

  6. Blume-Jensen P, Hunter T. (2001) Oncogenic kinase signalling. Nature 411, 355–65.

    Article  PubMed  CAS  Google Scholar 

  7. Steen H, Mann M. (2002) A new derivatization strategy for the analysis of phosphopeptides by precursor ion scanning in positive ion mode. Journal of the American Society for Mass Spectrometry 13, 996–1003.

    Article  PubMed  CAS  Google Scholar 

  8. Johnson SA, Hunter T. (2005) Kinomics: methods for deciphering the kinome. Nature Methods 2, 17–25.

    Article  PubMed  CAS  Google Scholar 

  9. Wells L, Vosseller K, Hart GW. (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291, 2376–78.

    Article  PubMed  CAS  Google Scholar 

  10. Huang Y, Fang J, Bedford MT, Zhang Y, Xu RM. (2006) Recognition of histone H3 lysin e-4 methylation by the double tudor domain of JMJD2A. Science 312, 748–51.

    Google Scholar 

  11. Philips MR, Pillinger MH, Staud R, et al. (1993) Carboxyl methylation of ras-related proteins during signal transduction in neutrophils. Science 259, 977–80.

    Article  PubMed  CAS  Google Scholar 

  12. Cenciarelli C, Hou D, Hsu KC, et al. (1992) Activation-induced ubiquitination of the T-cell antigen receptor. Science 257, 795–7.

    Article  PubMed  CAS  Google Scholar 

  13. Yamashita M, Fenn JB. (1984) Electrospray ion-source – another variation on the free-jet theme. Journal of Physical Chemistry 88, 4451–9.

    Article  CAS  Google Scholar 

  14. Karas M, Bachmann D, Hillenkamp F. (1985) Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Analytical Chemistry 57, 2935–9.

    Article  CAS  Google Scholar 

  15. Tanaka K, Waki H, Ido Y, et al. (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 2, 151–3.

    Article  CAS  Google Scholar 

  16. McLafferty FW. (1981) Tandem mass spectrometry. Science (New York, NY) 214, 280–7.

    Article  CAS  Google Scholar 

  17. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–67.

    Article  PubMed  CAS  Google Scholar 

  18. Eng JK, McCormack AL, Yates JR. (1994) An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. Journal of the American Society for Mass Spectrometry 5, 976–89.

    Article  CAS  Google Scholar 

  19. Craig R, Beavis RC. (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics (Oxford, England) 20, 1466–67.

    Article  PubMed  CAS  Google Scholar 

  20. Hunt DF, Yates JR, 3rd, Shabanowitz J, Winston S, Hauer CR. (1986) Protein sequencing by tandem mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America 83, 6233–7.

    Article  PubMed  CAS  Google Scholar 

  21. Paizs B, Suhai S. (2005) Fragmentation pathways of protonated peptides. Mass Spectrometry Reviews 24, 508–48.

    Article  PubMed  CAS  Google Scholar 

  22. Zubarev RA, Kelleher NL, McLafferty FW. (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. Journal of the American Chemical Society 120, 3265–6.

    Article  CAS  Google Scholar 

  23. Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America 101, 9528–33.

    Article  PubMed  CAS  Google Scholar 

  24. Zubarev RA. (2004) Electron-capture dissociation tandem mass spectrometry. Current Opinion in Biotechnology 15, 12–6.

    Article  PubMed  CAS  Google Scholar 

  25. Stensballe A, Jensen ON, Olsen JV, Haselmann KF, Zubarev RA. (2000) Electron capture dissociation of singly and multiply phosphorylated peptides. Rapid Communications in Mass Spectrometry 14, 1793–800.

    Article  PubMed  CAS  Google Scholar 

  26. Mirgorodskaya E, Roepstorff P, Zubarev RA. (1999) Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer. Analytical Chemistry 71, 4431–6.

    Article  PubMed  CAS  Google Scholar 

  27. Kocher T, Savitski MM, Nielsen ML, Zubarev RA. (2006) PhosTShunter: a fast and reliable tool to detect phosphorylated peptides in liquid chromatography Fourier transform tandem mass spectrometry data sets. Journal of Proteome Research 5, 659–68.

    Article  PubMed  Google Scholar 

  28. Craig R, Beavis RC. (2003) A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid Communications in Mass Spectrometry 17, 2310–6.

    Article  PubMed  CAS  Google Scholar 

  29. Marshall AG, Hendrickson CL. (2002) Fourier transform ion cyclotron resonance detection: principles and experimental configurations. International Journal of Mass Spectrometry 215, 59–75.

    Article  CAS  Google Scholar 

  30. Olsen JV, de Godoy LMF, Li GQ, et al. (2005) Parts per million mass accuracy on an orbitrap mass spectrometer via lock mass injection into a C-trap. Molecular & Cellular Proteomics 4, 2010–21.

    Article  CAS  Google Scholar 

  31. Savitski MM, Nielsen ML, Zubarev RA. (2006) ModifiComb, a new proteomic tool for mapping substoichiometric post-translational modifications, finding novel types of modifications, and fingerprinting complex protein mixtures. Molecular & Cellular Proteomics 5, 935–48.

    Article  CAS  Google Scholar 

  32. Horn DM, Zubarev RA, McLafferty FW. (2000) Automated de novo sequencing of proteins by tandem high-resolution mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America 97, 10313–7.

    Article  PubMed  CAS  Google Scholar 

  33. Nielsen ML, Savitski MM, Zubarev RA. (2005) Improving protein identification using complementary fragmentation techniques in fourier transform mass spectrometry. Molecular & Cellular Proteomics 4, 835–45.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Fälth Savitski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Savitski, M.F., Savitski, M.M. (2010). Unbiased Detection of Posttranslational Modifications Using Mass Spectrometry. In: Fenyö, D. (eds) Computational Biology. Methods in Molecular Biology, vol 673. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-842-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-842-3_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-841-6

  • Online ISBN: 978-1-60761-842-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics