Skip to main content

The Stochastic Time-Constrained Net Present Value Problem

  • Chapter
  • First Online:
Handbook on Project Management and Scheduling Vol. 2

Part of the book series: International Handbooks on Information Systems ((INFOSYS))

Abstract

The successful management of capital-intensive development and engineering projects requires a careful timing of the involved cash in- and outflows. To this end, the project management literature proposes to schedule the project activities so as to maximize their net present value (NPV), that is, the sum of all discounted cash flows. Traditionally, the literature on NPV maximization ignores the uncertainty inherent in the activity durations and cash flows. In this survey, we argue that this uncertainty should be accounted for explicitly, and we investigate the computational challenges involved in doing so. We then review the two major strands of literature on stochastic NPV maximization. The first set of papers provides optimal solutions under the assumption that the activity durations follow independent exponential distributions. The second strand of literature allows for generic distributions but focuses on suboptimal solutions. We conclude with a list of research questions that we believe deserve further attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CPLEX homepage: http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer.

References

  • Azaron A, Tavakkoli-Moghaddam R (2006) A multi-objective resource allocation problem in dynamic PERT networks. Appl Math Comput 181(1):163–174

    Article  Google Scholar 

  • Azaron A, Tavakkoli-Moghaddam R (2007) Multi-objective time-cost trade-off in dynamic PERT networks using an interactive approach. Eur J Oper Res 180(3):1186–1200

    Article  Google Scholar 

  • Azaron A, Katagiri H, Sakawa M, Kato K, Memariani A (2006) A multi-objective resource allocation problem in PERT networks. Eur J Oper Res 172(3):838–854

    Article  Google Scholar 

  • Benati S (2006) An optimization model for stochastic project networks with cash flows. Comput Manag Sci 3(4):271–284

    Article  Google Scholar 

  • Bendavid I, Golany B (2011) Predetermined intervals for start times of activities in the stochastic project scheduling problem. Ann Oper Res 186(1):429–442

    Article  Google Scholar 

  • Bendavid I, Golany B (2011) Optimal feeding buffers for projects or batch supply chains by an exact generalization of the newsvendor result. Ann Oper Res 189(1):25–42

    Article  Google Scholar 

  • Benmansour R, Elmaghraby SE, Allaoui H, Artiba A (2010) The approximation of distributions by phase-type distributions. In: Proceedings of the 3rd international conference on informations systems, logistics and supply chain, Casablanca

    Google Scholar 

  • Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton

    Book  Google Scholar 

  • Bertsekas DP (2007) Dynamic programming and optimal control, vol 2. Athena Scientic, Nashua

    Google Scholar 

  • Bertsekas DP, Tsitsiklis JN (1996) Neuro-dynamic programming. Athena Scientific, Nashua

    Google Scholar 

  • Bidot J, Vidal T, Laborie P, Beck JC (2009) A theoretic and practical framework for scheduling in a stochastic environment. J Sched 12(3):315–344

    Article  Google Scholar 

  • Brucker P, Drexl A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project scheduling: notation, classication, models, and methods. Eur J Oper Res 112(1):3–41

    Article  Google Scholar 

  • Buss AH (1995) Sequential experimentation for estimating the optimal delay of activities in PERT networks. In: Proceedings of the 1995 winter simulation conference, Arlington

    Google Scholar 

  • Buss AH, Rosenblatt MJ (1997) Activity delay in stochastic project networks. Oper Res 45(1):126–139

    Article  Google Scholar 

  • Chen W-N, Zhang J (2012) Scheduling multi-mode projects under uncertainty to optimize cash flows: a Monte Carlo ant colony system approach. J Comput Sci Technol 27(5):950–965

    Article  Google Scholar 

  • Colvin M, Maravelias CT (2010) Modeling methods and a branch and cut algorithm for pharmaceutical clinical trial planning using stochastic programming. Eur J Oper Res 203(1):205–215

    Article  Google Scholar 

  • Colvin M, Maravelias CT (2011) R&D pipeline management: task interdependencies and risk management. Eur J Oper Res 215(3):616–628

    Article  Google Scholar 

  • Creemers S, De Reyck B, Leus R (2009) R&D project planning with multiple trials in uncertain environments. In: Proceedings of the IEEE international conference on industrial engineering and engineering management, Macau

    Google Scholar 

  • Creemers S, Leus R, De Reyck B (2010) Project scheduling with alternative technologies: incorporating varying activity duration variability. In: Proceedings of the IEEE international conference on industrial engineering and engineering Management, Macau

    Google Scholar 

  • Creemers S, Leus R, Lambrecht M (2010) Scheduling Markovian PERT networks to maximize the net present value. Oper Res Lett 38(1):51–56

    Article  Google Scholar 

  • Dayanand N, Padman R (1999) On payment schedules in contractor client negotiations in projects: an overview of the problem and research issues. In: Wȩglarz J (ed) Project scheduling: recent models, algorithms and applications. Kluwer Academic, Dordrecht, pp 477–508

    Chapter  Google Scholar 

  • Dayanand N, Padman R (2001) Project contracts and payment schedules: the client’s problem. Manag Sci 47(12):1654–1667

    Article  Google Scholar 

  • Demeulemeester EL, Herroelen WS (2002) Project scheduling: a research handbook. Kluwer Academic, Dordrecht

    Google Scholar 

  • De Reyck B, Leus R (2008) R&D-project scheduling when activities may fail. IIE Trans 40(4):367–384

    Article  Google Scholar 

  • De Reyck B, Grushka-Cockayne Y, Leus R (2007) A new challenge in project scheduling: the incorporation of activity failures. Rev Bus Econ LII(3):411–434

    Google Scholar 

  • Dixit AK, Pindyck RS (1994) Investment under uncertainty. Princeton University Press, Princeton

    Google Scholar 

  • Elmaghraby SE (2001) On the optimal release time of jobs with random processing times, with extensions to other criteria. Int J Prod Econ 74(1–3):103–113

    Article  Google Scholar 

  • Elmaghraby SE (2005) On the fallacy of averages in project risk management. Eur J Oper Res 165(2):307–313.

    Article  Google Scholar 

  • Elmaghraby SE, Herroelen WS (1992) The scheduling of activities to maximize the net present value of projects. Eur J Oper Res 49(1):35–49

    Article  Google Scholar 

  • Elmaghraby SE, Kamburowski J (1990) On project representation and activity floats. Arab J Sci Eng 15(4B):626–637

    Google Scholar 

  • Elmaghraby SE, Kamburowski J (1992) The analaysis of activity networks under generalized precedence relations (GPRs). Manag Sci 38(9):1245–1263

    Article  Google Scholar 

  • Elmaghraby SE, Ferreira AA, Tavares LV (2000) Optimal start times under stochastic activity durations. Int J Prod Econ 64(1–3):153–164

    Article  Google Scholar 

  • Fazar W (1959) Program evaluation and review technique. Am Stat 13(2):10

    Google Scholar 

  • Ghomi SMTF, Hashemin SS (1999) A new analytical algorithm and generation of Gaussian quadrature formula for stochastic network. Eur J Oper Res 114(3):610–625

    Article  Google Scholar 

  • Goh J, Hall NG (2013) Total cost control in project management via satisficing. Manag Sci 59(6):1354–1372

    Article  Google Scholar 

  • Goldratt EM (1997) Critical chain. The North River Press, Great Barrington

    Google Scholar 

  • Grinold RC (1972) The payment scheduling problem. Nav Res Logist Q 19(1):123–136

    Article  Google Scholar 

  • Gutin E, Kuhn D, Wiesemann W (2013) Interdiction games on Markovian PERT networks. Available on Optimization Online, Forthcoming, Manag Sci

    Google Scholar 

  • Hagstrom JN (1988) Computational complexity of PERT problems. Networks 18(2):139–147

    Article  Google Scholar 

  • He Z, Wang N, Li P (2012) Simulated annealing for financing cost distribution based project payment scheduling from a joint perspective. Ann Oper Res (published online before print)

    Google Scholar 

  • Heitsch H and Römisch W (2003) Scenario reduction algorithms in stochastic programming. Comput Optim Appl 24(2–3):187–206

    Article  Google Scholar 

  • Henrion R, Küchler C, Römisch W (2009) Scenario reduction in stochastic programming with respect to discrepancy distances. Comput Optim Appl 43(1):67–93

    Article  Google Scholar 

  • Herbots J, Herroelen WS, Leus R (2007) Efficient and effective solution procedures for order acceptance and capacity planning. Working paper, Department of Decision Sciences and Information Management, Katholieke Universiteit Leuven, doi:10.2139/ssrn.1089359

    Google Scholar 

  • Herroelen WS, Leus R (2004) Robust and reactive project scheduling: a review and classification of procedures. Int J Prod Res 42(8):1599–1620

    Article  Google Scholar 

  • Herroelen WS, Leus R (2005) Project scheduling under uncertainty: survey and research potentials. Eur J Oper Res 165(2):289–306

    Article  Google Scholar 

  • Herroelen WS, Van Dommelen P, Demeulemeester EL (1997) Project network models with discounted cash flows: a guided tour through recent developments. Eur J Oper Res 100(1):97–121

    Article  Google Scholar 

  • Herroelen WS, Demeulemeester E, De Reyck B (1999) A classification scheme for project scheduling. In: Wȩglarz J (ed) Project scheduling: recent models, algorithms and applications. Kluwer Academic, Dordrecht, pp 1–26

    Chapter  Google Scholar 

  • Ierapetritou M, Li Z (2009) Modeling and managing uncertainty in process planning and scheduling. In: Chaovalitongse W, Furman KC, Pardalos PM (eds) Optimization and logistics challenges in the enterprise. Springer, Berlin, pp 97–144

    Chapter  Google Scholar 

  • Jørgensen T, Wallace SW (2000) Improving project cost estimation by taking into account managerial flexibility. Eur J Oper Res 127(2):239–251

    Article  Google Scholar 

  • Kall P, Wallace SW (1994) Stochastic programming. Wiley, Hoboken

    Google Scholar 

  • Kavadias S, Loch CH (2004) Project selection under uncertainty: dynamically allocating resources to maximize value. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Ke H, Liu B (2005) Project scheduling problem with stochastic activity duration times. Appl Math Comput 168(1):342–353

    Article  Google Scholar 

  • Ke H, Liu B (2007) Project scheduling problem with mixed uncertainty of randomness and fuzziness. Eur J Oper Res 183(1):135–147

    Article  Google Scholar 

  • Ke H, Liu B (2010) Fuzzy project scheduling problem and its hybrid intelligent algorithm. Appl Math Model 34(2):301–308

    Article  Google Scholar 

  • Kelley JE Jr (1961) Critical path planning and scheduling: mathematical basis. Oper Res 9(3):296–320

    Article  Google Scholar 

  • Kimms A (2001) Mathematical programming and financial objectives for scheduling projects. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Kolisch R, Padman R (2001) An integrated survey of deterministic project scheduling. Omega-Int J Manag S 29(3):249–272

    Article  Google Scholar 

  • Kulkarni VG, Adlakha VG (1986) Markov and Markov-regenerative PERT networks. Oper Res 34(5):769–781

    Article  Google Scholar 

  • Li Z, Ierapetritou M (2008) Process scheduling under uncertainty: review and challenges. Comput Chem Eng 32(4–5):715–727

    Article  Google Scholar 

  • Lock D (2007) Project management, 9th edn. Gower Publishing, Burlington

    Google Scholar 

  • Luenberger DG (1997) Investment science. Oxford University Press, Oxford

    Google Scholar 

  • Malcolm DG, Roseboom JH, Clark CE, Fazar W (1959) Application of a technique for research and development program evaluation. Oper Res 7(5):646–669

    Article  Google Scholar 

  • Maylor H (2010) Project Management, 4th ed. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Meredith JR, Mantel SJ (2006) Project management: a managerial approach. Wiley, Hoboken

    Google Scholar 

  • Möhring RH (2001) Scheduling under uncertainty: Bounding the makespan distribution. In: Alt H (ed) Computational discrete mathematics: advanced lectures. Springer, Berlin, pp 79–97

    Chapter  Google Scholar 

  • Nadjafi BA, Kolyaei S (2010) A multi objective Fibonacci search based algorithm for resource allocation in PERT networks. J Opt Ind Eng 3(6):13–23

    Google Scholar 

  • Neumann K (1999) Scheduling of projects with stochastic evolution structure. In: Wȩglarz J (ed) Project scheduling: recent models, algorithms and applications. Kluwer Academic, Dordrecht, pp 309–332

    Chapter  Google Scholar 

  • Neumann K, Zimmermann J (2000) Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints. Eur J Oper Res 127(2):425–443

    Article  Google Scholar 

  • Özdamar L (1998) On scheduling project activities with variable expenditure rates. IIE Trans 30(8):695–704

    Google Scholar 

  • Özdamar L, Dündar H (1997) A flexible heuristic for a multi-mode capital constrained project scheduling problem with probabilistic cash inflows. Comp Oper Res 24(12):1187–1200

    Article  Google Scholar 

  • Pflug G (2000) Some remarks on the value-at-risk and the conditional value-at-risk. In: Uryasev S (ed) Probabilistic constrained optimization: methodology and applications. Kluwer Academic, Dordrecht, pp 272–281

    Chapter  Google Scholar 

  • Powell WP (2011) Approximate dynamic programming: solving the curses of dimensionality, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Project Management Institute (2013) A guide to the project management body of knowledge (PMBOK guide), 5th edn. Project Management Institute, Newtown Square

    Google Scholar 

  • Puterman ML (1994) Markov decision processes: discrete stochastic dynamic programming. Wiley, Hoboken

    Book  Google Scholar 

  • Rockafellar RT, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2(3):21–41

    Google Scholar 

  • Rudolph AJ, Elmaghraby SE (2009) The optimal resource allocation in stochastic activity networks via continuous time Markov chains. In: Proceedings of the international conference on industrial engineering and systems management, Montreal

    Google Scholar 

  • Russell AH (1970) Cash flows in networks. Manag Sci 16(5):357–373

    Article  Google Scholar 

  • Ruszczyński A, Shapiro A (2003) Stochastic programming. Elsevier, Amsterdam

    Google Scholar 

  • Schmidt CW, Grossmann IE (2000) The exact overall time distribution of a project with uncertain task durations. Eur J Oper Res 126(3):614–636

    Article  Google Scholar 

  • Schwindt C, Zimmermann J (2001) A steepest ascent approach to maximizing the net present value of projects. Math Method Oper Res 53(3):435–450

    Article  Google Scholar 

  • Shavandi H, Najafi AA, Moslehirad A (2012) Fuzzy project scheduling with discounted cash flows. Econ Comput Econ Cyb 46(1):219–232

    Google Scholar 

  • Shtub A (1986) The trade-off between the net present cost of a project and the probability to complete it on schedule. J Oper Manag 6(4):461–470

    Article  Google Scholar 

  • Slotnick SA (2011) Order acceptance and scheduling: a taxonomy and review. Eur J Oper Res 212(1):1–11

    Article  Google Scholar 

  • Sobel MJ, Szmerekovsky JG, Tilson V (2009) Scheduling projects with stochastic activity duration to maximize expected net present value. Eur J Oper Res 198(3):697–705

    Article  Google Scholar 

  • Tavares LV, Ferreira JAA, Coelho JS (1998) On the optimal management of project risk. Eur J Oper Res 107(2):451–469

    Article  Google Scholar 

  • Tereso AP, Araújo MMT, Elmaghraby SE (2003) Experimental results of an adaptive resource allocation technique to stochastic multimodal projects. In: Proceedings of the international conference on industrial engineering and production management, Porto

    Google Scholar 

  • Tereso AP, Araújo MMT, Elmaghraby SE (2004) Adaptive resource allocation in multimodal activity networks. Int J Prod Econ 92(1):1–10

    Article  Google Scholar 

  • Tereso AP, Araújo MMT, Moutinho RS, Elmaghraby SE (2008) Project management: multiple resources allocation. In: Proceedings of the international conference on engineering optimization, Rio de Janeiro

    Google Scholar 

  • Tereso AP, Barreiro D, Araújo MMT, Elmaghraby SE (2010) On the optimal resource allocation in projects considering the time value of money. In: Proceedings of the third international conference on information systems, logistics and supply chain, Casablanca

    Google Scholar 

  • Trietsch D (2005) Economically balanced criticalities for robust project scheduling and control. Working paper, ISOM Department, University of Auckland, Auckland

    Google Scholar 

  • Trietsch D (2006) Optimal feeding buffers for projects or batch supply chains by an exact generalization of the newsvendor result. Int J Prod Res 44(4):627–637

    Article  Google Scholar 

  • Uçal İ, Kuchta D (2011) Project scheduling to maximize fuzzy net present value. In: Proceedings of the world congress on engineering, London

    Google Scholar 

  • Verderame PM, Elia JA, Li J, Floudas CA (2010) Planning and scheduling under uncertainty: a review across multiple sectors. Ind Eng Chem Res 49(9):3993–4017

    Article  Google Scholar 

  • Wang J, Wu Z, Sun Y (2000) Optimum activity delay in stochastic activity networks. In: Proceedings of the 7th international workshop on project management and scheduling, Osnabrück

    Google Scholar 

  • Wiesemann W (2012) Optimization of temporal networks under uncertainty. Springer, Berlin

    Book  Google Scholar 

  • Wiesemann W, Kuhn D, Rustem B (2010) Maximizing the net present value of a project under uncertainty. Eur J Oper Res 202(2):356–367

    Article  Google Scholar 

  • Wiesemann W, Kuhn D, Rustem B (2012) Multi-resource allocation in stochastic project scheduling. Ann Oper Res 193(1):193–220

    Article  Google Scholar 

  • Wiesemann W, Kuhn D, Rustem B (2012) Robust resource allocations in temporal networks. Math Program 135(1–2):437–471

    Article  Google Scholar 

  • Yang KK, Tay LC, Sum CC (1995) A comparison of stochastic scheduling rules for maximizing project net present value. Eur J Oper Res 85(2):327–339

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Wiesemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wiesemann, W., Kuhn, D. (2015). The Stochastic Time-Constrained Net Present Value Problem. In: Schwindt, C., Zimmermann, J. (eds) Handbook on Project Management and Scheduling Vol. 2. International Handbooks on Information Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-05915-0_5

Download citation

Publish with us

Policies and ethics