Skip to main content

Simulation of Nanoscale Double-Gate MOSFETs

  • Conference paper
  • First Online:
Progress in Industrial Mathematics at ECMI 2012

Part of the book series: Mathematics in Industry ((TECMI,volume 19))

  • 990 Accesses

Abstract

A nanoscale double-gate MOSFET is simulated by using a subband model based on the maximum entropy principle (MEP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sinha, S., Goodson, K.E.: Thermal conduction in sub-100 nm transistors. Microelectron. J. 37, 1148–1157 (2006)

    Article  Google Scholar 

  2. Rowlette, J.A., Goodson, K.E.: Fully coupled nonequilibrium electron-phonon transport in nanometer-scale silicon FETs. IEEE Trans. Electron Devices 55, 220–232 (2008)

    Article  Google Scholar 

  3. Mascali, G., Romano, V.: A non parabolic hydrodynamical subband model for semiconductors based on the maximum entropy principle. Math. Comput. Model. 55, 1003–1020 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Camiola, V.D., Mascali, G., Romano, V.: Numerical simulation of a double-gate MOSFET with a subband model for semiconductors based on the maximum entropy principle. Continuum Mech. Thermodyn. 24, 417–436 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Romano, V., Zwierz, M.: Electron-phonon hydrodynamical model for semiconductors. Z. Angew. Math. Phys. 61, 1111–1131 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Romano, V., Rusakov, A.: 2d numerical simulations of an electron–phonon hydrodynamical model based on the maximum entropy principle. Comput. Methods Appl. Mech. Eng. 199, 2741–2751 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

G.M. acknowledges the financial support by P.R.A., University of Calabria. V.R. acknowledges the financial support by P.R.A., University of Catania and the P.R.I.N. project 2010 “Kinetic and macroscopic models for particle transport in gases and semiconductors: analytical and computational aspects.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Romano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Camiola, V.D., Mascali, G., Romano, V. (2014). Simulation of Nanoscale Double-Gate MOSFETs. In: Fontes, M., Günther, M., Marheineke, N. (eds) Progress in Industrial Mathematics at ECMI 2012. Mathematics in Industry(), vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-05365-3_4

Download citation

Publish with us

Policies and ethics