Skip to main content

Introduction to Stochastic Geometry

  • Chapter
  • First Online:
Stochastic Analysis for Poisson Point Processes

Part of the book series: Bocconi & Springer Series ((BS,volume 7))

Abstract

This chapter introduces some of the fundamental notions from stochastic geometry. Background information from convex geometry is provided as far as this is required for the applications to stochastic geometry.

First, the necessary definitions and concepts related to geometric point processes and from convex geometry are provided. These include Grassmann spaces and invariant measures, Hausdorff distance, parallel sets and intrinsic volumes, mixed volumes, area measures, geometric inequalities and their stability improvements. All these notions and related results will be used repeatedly in the present and in the subsequent chapters of the book.

Second, a variety of important models and problems from stochastic geometry will be reviewed. Among these are the Boolean model, random geometric graphs, intersection processes of (Poisson) processes of affine subspaces, random mosaics, and random polytopes. We state the most natural problems and point out important new results and directions of current research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alishahi, K., Sharifitabar, M.: Volume degeneracy of the typical cell and the chord length distribution for Poisson–Voronoi tessellations in high dimensions. Adv. Appl. Probab. 40, 919–938 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bárány, I.: Random polytopes in smooth convex bodies. Mathematika 39, 81–92 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bárány, I., Buchta, C.: Random polytopes in a convex polytope, independence of shape, and concentration of vertices. Math. Ann. 297, 467–497 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bárány, I., Reitzner, M.: Poisson polytopes. Ann. Probab. 38, 1507–1531 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bárány, I., Reitzner, M.: On the variance of random polytopes. Adv. Math. 225, 1986–2001 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bárány, I., Fodor, F., Vígh, V.: Intrinsic volumes of inscribed random polytopes in smooth convex bodies. Adv. Appl. Probab. 42, 605–619 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baumstark, V., Last, G.: Some distributional results for Poisson–Voronoi tessellations. Adv. Appl. Probab. 39, 16–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baumstark, V., Last, G.: Gamma distributions for stationary Poisson flat processes. Adv. Appl. Probab. 41, 911–939 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beermann, M., Reitzner, M.: Beyond the Efron-Buchta identities: distributional results for Poisson polytopes. Discrete Comput. Geom. 53, 226–244 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Beermann, M., Redenbach, C., Thäle, C.: Asymptotic shape of small cells. Math. Nachr. 287, 737–747 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Blaschke, W.: Über affine Geometrie XI: Lösung des “Vierpunktproblems” von Sylvester aus der Theorie der geometrischen Wahrscheinlichkeiten. Ber. Verh. Sächs. Ges. Wiss. Leipzig Math.-Phys. Kl. 69, 436–453 (1917); reprinted in: Burau, W., et al. (eds.) Wilhelm Blaschke. Gesammelte Werke. Konvexgeometrie, vol. 3, pp. 284–301. Essen, Thales (1985)

    Google Scholar 

  12. Bollobás, B., Riordan, O.: The critical probability for random Voronoi percolation in the plane is 1/2. Probab. Theory Relat. Fields 136, 417–468 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bollobás, B., Riordan, O.: Percolation. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  14. Böröczky, K., Hug, D.: Stability of the reverse Blaschke–Santaló inequality for zonoids and applications. Adv. Appl. Math. 44, 309–328 (2010)

    Article  MATH  Google Scholar 

  15. Böröczky, K., Hoffmann, L.M., Hug, D.: Expectation of intrinsic volumes of random polytopes. Period. Math. Hung. 57, 143–164 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bourguin, S., Peccati, G.: Portmanteau inequalities on the Poisson space: mixed regimes and multidimensional clustering. Electron. J. Probab. 19, 42 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bourguin, S., Peccati, G.: The Malliavin-Stein method on the Poisson space. In: Peccati, G., Reitzner, M. (eds.) Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener-Ito Chaos Expansions and Stochastic Geometry. Bocconi & Springer Series, vol. 7, pp. 185–228. Springer, Cham (2016)

    Google Scholar 

  18. Buchta, C.: Stochastische Approximation Konvexer Polygone. Z. Wahrscheinlichkeitstheor. Verwandte Geb. 67, 283–304 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cabo, A.J., Groeneboom, P.: Limit theorems for functionals of convex hulls. Probab. Theory Relat. Fields 100, 31–55 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Calka, P.: The distributions of the smallest disks containing the Poisson Voronoi typical cell and the Crofton cell in the plane. Adv. Appl. Probab. 34, 702–717 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Calka, P.: Tessellations. In: Kendall, W.S., Molchanov, I. (eds.) New Perspectives in Stochastic Geometry, pp. 145–169. Oxford University Press, London (2010)

    Google Scholar 

  22. Calka, P., Chenavier, N.: Extreme values for characteristic radii of a Poisson–Voronoi tessellation. Extremes 17, 359–385 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Calka, P., Schreiber, T.: Limit theorems for the typical Poisson–Voronoi cell and the Crofton cell with a large inradius. Ann. Probab. 33, 1625–1642 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Calka, P., Schreiber, T.: Large deviation probabilities for the number of vertices of random polytopes in the ball. Adv. Appl. Probab. 38, 47–58 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Calka, P., Yukich, J.E.: Variance asymptotics for random polytopes in smooth convex bodies. Probab. Theory Relat. Fields 158, 435–463 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Calka, P., Schreiber, T., Yukich, J.E.: Brownian limits, local limits and variance asymptotics for convex hulls in the ball. Ann. Probab. 41, 50–108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chenavier, N.: A general study of extremes of stationary tessellations with applications. Stoch. Process. Appl. 124, 2917–2953 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dalla, L., Larman, D.G.: Volumes of a random polytope in a convex set. In: Gritzmann, P., Sturmfels, B. (eds.) Applied Geometry and Discrete Mathematics. The Victor Klee Festschrift. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 175–180. American Mathematical Society, Providence (1991)

    Google Scholar 

  29. Decreusefond, L., Ferraz, E., Randriam, H., Vergne, A.: Simplicial homology of random configurations. Adv. Appl. Probab. 46, 1–20 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Devillers, O., Glisse, M., Goaoc, X., Moroz, G., Reitzner, M.: The monotonicity of f-vectors of random polytopes. Electron. Commun. Probab. 18, 1–8 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Efron, B.: The convex hull of a random set of points. Biometrika 52, 331–343 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  32. Einmahl, J.H.J., Khmaladze, E.V.: The two-sample problem in \(\mathbb{R}^{m}\) and measure-valued martingales. In: State of the Art in Probability and Statistics (Leiden, 1999). IMS Lecture Notes Monograph Series, vol. 36, pp. 434–463. Institute of Mathematical Statistics, Beachwood (2001)

    Google Scholar 

  33. Giannopoulos, A.: On the mean value of the area of a random polygon in a plane convex body. Mathematika 39, 279–290 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Goldmann, A.: Sur une conjecture de D.G. Kendall concernant la cellule do Crofton du plan et sur sa contrepartie brownienne. Ann. Probab. 26, 1727–1750 (1998)

    Google Scholar 

  35. Graf, S., Luschgy, H.: Foundations of Quantization for Probability Distributions. Lecture Notes in Mathematics, vol. 1730. Springer, Berlin (2000)

    Google Scholar 

  36. Groemer, H.: On some mean values associated with a randomly selected simplex in a convex set. Pac. J. Math. 45, 525–533 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  37. Groemer, H.: On the mean value of the volume of a random polytope in a convex set. Arch. Math. 25, 86–90 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  38. Groemer, H.: On the extension of additive functionals on classes of convex sets. Pac. J. Math. 75, 397–410 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  39. Groeneboom, P.: Limit theorems for convex hulls. Probab. Theory Relat. Fields 79, 327–368 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  40. Haenggi, M.: Stochastic Geometry for Wireless Networks. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  41. Heinrich, L.: Large deviations of the empirical volume fraction for stationary Poisson grain models. Ann. Appl. Probab. 15, 392–420 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Heinrich, L., Molchanov, I.S.: Central limit theorems for a class of random measures associated with germ-grain models. Adv. Appl. Probab. 31, 283–314 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. Heinrich, L., Schmidt, H., Schmidt, V.: Limit theorems for stationary tessellations with random inner cell structure. Adv. Appl. Probab. 37, 25–47 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Heveling, M., Reitzner, M.: Poisson–Voronoi Approximation. Ann. Appl. Probab. 19, 719–736 (2009)

    Article  MathSciNet  Google Scholar 

  45. Hörrmann, J., Hug, D.: On the volume of the zero cell of a class of isotropic Poisson hyperplane tessellations. Adv. Appl. Probab. 46, 622–642 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hörrmann, J., Hug, D., Reitzner, M., Thähle, C.: Poisson polyhedra in high dimensions. Adv. Math. 281, 1–39 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hsing, T.: On the asymptotic distribution of the area outside a random convex hull in a disk. Ann. Appl. Probab. 4, 478–493 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hug, D.: Random mosaics. In: Baddeley, A., Bárány, I., Schneider, R., Weil, W. (eds.) Stochastic Geometry. Edited by W. Weil: Lecture Notes in Mathematics, vol. 1892, pp. 247–266. Springer, Berlin (2007)

    Chapter  Google Scholar 

  49. Hug, D.: Random polytopes. In: Spodarev, E. (ed.) Stochastic Geometry, Spatial Statistics and Random Fields. Lecture Notes in Mathematics, vol. 2068, pp. 205–238. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  50. Hug, D., Schneider, R.: Large typical cells in Poisson–Delaunay mosaics. Rev. Roum. Math. Pures Appl. 50, 657–670 (2005)

    MathSciNet  MATH  Google Scholar 

  51. Hug, D., Schneider, R.: Asymptotic shapes of large cells in random tessellations. Geom. Funct. Anal. 17, 156–191 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. Hug, D., Schneider, R.: Typical cells in Poisson hyperplane tessellations. Discrete Comput. Geom. 38, 305–319 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Hug, D., Schneider, R.: Large faces in Poisson hyperplane mosaics. Ann. Probab. 38, 1320–1344 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Hug, D., Schneider, R.: Faces with given directions in anisotropic Poisson hyperplane mosaics. Adv. Appl. Probab. 43, 308–321 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  55. Hug, D., Schneider, R.: Approximation properties of random polytopes associated with Poisson hyperplane processes. Adv. Appl. Probab. 46, 919–936 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Hug, D., Reitzner, M., Schneider, R.: The limit shape of the zero cell in a stationary Poisson hyperplane tessellation. Ann. Probab. 32, 1140–1167 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  57. Hug, D., Reitzner, M., Schneider, R.: Large Poisson–Voronoi cells and Crofton cells. Adv. Appl. Probab. 36, 667–690 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  58. Hug, D., Last, G., Schulte, M.: Second order properties and central limit theorems for geometric functionals of Boolean models. Ann. Appl. Probab. 26, 73–135 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  59. Hug, D., Thäle, C., Weil, W.: Intersection and proximity of processes of flats. J. Math. Anal. Appl. 426, 1–42 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  60. Kahle, M.: Random geometric complexes. Discrete Comput. Geom. 45, 553–573 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  61. Kahle, M.: Topology of random simplicial complexes: a survey. Algebraic Topology: Applications and New Directions. Contemporary Mathematics, vol. 620, pp. 201–221. American Mathematical Society, Providence (2014)

    Google Scholar 

  62. Kahle, M., Meckes, E.: Limit theorems for Betti numbers of random simplicial complexes. Homol. Homot. Appl. 15, 343–374 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  63. Khmaladze, E., Toronjadze, N.: On the almost sure coverage property of Voronoi tessellation: the \(\mathbb{R}^{1}\) case. Adv. Appl. Probab. 33, 756–764 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  64. Kovalenko, I.N.: A proof of a conjecture of David Kendall on the shape of random polygons of large area. (Russian) Kibernet. Sistem. Anal. 187, 3–10. Engl. transl. Cybernet. Syst. Anal. 33, 461–467 (1997)

    Google Scholar 

  65. Kovalenko, I.N.: A simplified proof of a conjecture of D.G. Kendall concerning shapes of random polygons. J. Appl. Math. Stoch. Anal. 12, 301–310 (1999)

    Google Scholar 

  66. Lachièze-Rey, R., Peccati, G.: Fine Gaussian fluctuations on the Poisson space, I: contractions, cumulants and geometric random graphs. Electron. J. Probab. 18 (Article 32), 1–32 (2013)

    Google Scholar 

  67. Lachièze-Rey, R., Peccati, G.: Fine Gaussian fluctuations on the Poisson space, II: rescaled kernels, marked processes and geometric U-statistics. Stoch. Process. Appl. 123, 4186–4218 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  68. Lachièze-Rey, R., Peccati, G.: New Kolmogorov bounds for functionals of binomial point processes. arXiv:1505.04640 (2015)

    Google Scholar 

  69. Lachièze-Rey, R., Reitzner, M.: U-statistics in stochastic geometry. In: Peccati, G., Reitzner, M. (eds.) Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener-Ito Chaos Expansions and Stochastic Geometry. Bocconi & Springer Series, vol. 7, pp. 229–253. Springer, Cham (2016)

    Google Scholar 

  70. Lachièze-Rey, R., Vega, S.: Boundary density and Voronoi set estimation for irregular sets. arXiv:1501.04724 (2015)

    Google Scholar 

  71. Last, G.: Stochastic analysis for Poisson processes. In: Peccati, G., Reitzner, M. (eds.) Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener-Ito Chaos Expansions and Stochastic Geometry. Bocconi and Springer Series, vol. 6, pp. 1–36. Springer/Bocconi University Press, Milan (2016)

    Google Scholar 

  72. Last, G., Ochsenreither, E.: Percolation on stationary tessellations: models, mean values and second order structure. J. Appl. Probab. 51A, 311–332 (2014). An earlier and more comprehensive version is available via arXiv:1312.6366

    Google Scholar 

  73. Last, G., Penrose, M.: Fock space representation, chaos expansion and covariance inequalities for general Poisson processes. Probab. Theory Relat. Fields 150, 663–690 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  74. Last, G., Penrose, M., Schulte, M., Thäle, C.: Central limit theorems for some multivariate Poisson functionals. Adv. Appl. Probab. 46, 348–364 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  75. Miles, R.E.: A heuristic proof of a conjecture of D.G. Kendall concerning shapes of random polygons. J. Appl. Math. Stoch. Anal. 12, 301–310 (1995)

    Google Scholar 

  76. Milman, V.D., Pajor, A.: Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. In: Geometric Aspects of Functional Analysis (1987–1988). Lecture Notes in Mathematics, vol. 1376, pp. 64–104. Springer, Berlin (1989)

    Google Scholar 

  77. Neher, R.A., Mecke, K., Wagner, H.: Topological estimation of percolation thresholds. J. Stat. Mech. Theory Exp. P01011 (2008)

    Google Scholar 

  78. Ochsenreither, E.: Geometrische Kenngrößen und zentrale Grenzwertsätze stetiger Perkolationsmodelle. Ph.D. thesis, Karlsruhe (2014)

    Google Scholar 

  79. Pardon, J.: Central limit theorems for random polygons in an arbitrary convex set. Ann. Probab. 39, 881–903 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  80. Pardon, J.: Central limit theorems for uniform model random polygons. J. Theor. Probab. 25, 823–833 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  81. Peccati, G., Zheng, C.: Multi-dimensional Gaussian fluctuations on the Poisson space. Electron. J. Probab. 15, 1487–1527 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  82. Peccati, G., Solé, J.L., Taqqu, M.S., Utzet, F.: Stein’s method and normal approximation of Poisson functionals. Ann. Prob. 38, 443–478 (2010)

    Article  MATH  Google Scholar 

  83. Penrose, M.D.: Random Geometric Graphs. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  84. Penrose, M.D.: Laws of large numbers in stochastic geometry with statistical applications. Bernoulli 13, 1124–1150 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  85. Rademacher, L.: On the monotonicity of the expected volume of a random simplex. Mathematika 58, 77–91 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  86. Reitzner, M.: Random polytopes and the Efron–Stein jackknife inequality. Ann. Probab. 31, 2136–2166 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  87. Reitzner, M.: Stochastical approximation of smooth convex bodies. Mathematika 51, 11–29 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  88. Reitzner, M.: Central limit theorems for random polytopes. Probab. Theory Relat. Fields 133, 483–507 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  89. Reitzner, M.: The combinatorial structure of random polytopes. Adv. Math. 191, 178–208 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  90. Reitzner, M.: Random polytopes. In: Kendall W.S., Molchanov, I. (eds.) New Perspectives in Stochastic Geometry, pp. 45–76. Oxford University Press, Oxford (2010)

    Google Scholar 

  91. Reitzner, M., Schulte, M.: Central limit theorems for U-statistics of Poisson point processes. Ann. Prob. 41 (6), 3879–3909 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  92. Reitzner, M., Spodarev, E., Zaporozhets, D.: Set reconstruction by Voronoi cells. Adv. Appl. Probab. 44, 938–953 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  93. Reitzner, M., Schulte, M., Thäle, C.: Limit theory for the Gilbert graph. arXiv:1312.4861 (2014)

    Google Scholar 

  94. Rényi, A., Sulanke, R.: Über die konvexe Hülle von n zufällig gewählten Punkten. Z. Wahrscheinlichkeitstheor. Verwandte Geb. 2, 75–84 (1963)

    Article  MATH  Google Scholar 

  95. Rényi, A., Sulanke, R.: Über die konvexe Hülle von n zufällig gewählten Punkten II. Z. Wahrscheinlichkeitstheor. Verwandte Geb. 3, 138–147 (1964)

    Article  MATH  Google Scholar 

  96. Schneider, R.: Approximation of convex bodies by random polytopes. Aequationes Math. 32, 304–310 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  97. Schneider, R.: A duality for Poisson flats. Adv. Appl. Probab. 31, 63–68 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  98. Schneider, R.: Weighted faces of Poisson hyperplane tessellations. Adv. Appl. Probab. 41, 682–694 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  99. Schneider, R.: Vertex numbers of weighted faces in Poisson hyperplane mosaics. Discrete Comput. Geom. 44, 599–907 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  100. Schneider, R.: Extremal properties of random mosaics. In: Bárány, I., Böröczky, K.J., Fejes Tóth, G., Pach, J. (eds.) Geometry: Intuitive, Discrete, and Convex. A Tribute to László Fejes Tóth. Bolyai Society Mathematical Studies, vol. 24, pp. 301–330. Springer, Berlin (2013)

    Google Scholar 

  101. Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory, 2nd expanded edn. Cambridge University Press, New York (2014)

    Google Scholar 

  102. Schneider, R.: Second moments related to Poisson hyperplane tessellations. Manuscript (2015)

    Google Scholar 

  103. Schneider, R.: Discrete aspects of stochastic geometry. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry. CRC Press Series on Discrete Mathematics and its Applications, pp. 167–184. CRC, Boca Raton (2015)

    Google Scholar 

  104. Schneider, R., Weil, W.: Stochastic and Integral Geometry. Probability and its Applications (New York). Springer, Berlin (2008)

    Google Scholar 

  105. Schneider, R., Weil, W.: Classical stochastic geometry. In: Kendall, W.S., Molchanov, I. (eds.) New Perspectives in Stochastic Geometry, pp. 1–42. Oxford University Press, Oxford (2010)

    Google Scholar 

  106. Schneider, R., Wieacker, J.A.: Random polytopes in a convex body. Z. Wahrscheinlichkeitstheor. Verwandte Geb. 52, 69–73 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  107. Schulte, M.: A central limit theorem for the Poisson-Voronoi approximation. Adv. Appl. Math. 49, 285–306 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  108. Schulte, M., Thäle, C.: The scaling limit of Poisson-driven order statistics with applications in geometric probability. Stoch. Process. Appl. 122, 4096–4120 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  109. Schulte, M., Thäle, C.: Distances between Poisson k-flats. Methodol. Comput. Appl. Probab. 16, 311–329 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  110. Schütt, C.: Random polytopes and affine surface area. Math. Nachr. 170, 227–249 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  111. Thäle, C., Yukich, J.E.: Asymptotic theory for statistics of the Poisson–Voronoi approximation. Bernoulli. J. Math. Anal. Appl. 434, 1365–1375 (2016)

    Article  Google Scholar 

  112. Vu, V.H.: Sharp concentration of random polytopes. Geom. Funct. Anal. 15, 1284–1318 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  113. Wieacker, J.A.: Einige Probleme der polyedrischen Approximation. Diplomarbeit, Freiburg im Breisgau (1978)

    Google Scholar 

  114. Yukich, J.E.: Surface order scaling in stochastic geometry. Ann. Appl. Probab. 25, 177–210 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  115. Zuyev, S.: Stochastic geometry and telecommunications networks. In: Kendall, W.S., Molchanov, I. (eds.) New Perspectives in Stochastic Geometry, pp. 520–554, Oxford university Press, Oxford (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Reitzner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hug, D., Reitzner, M. (2016). Introduction to Stochastic Geometry. In: Peccati, G., Reitzner, M. (eds) Stochastic Analysis for Poisson Point Processes. Bocconi & Springer Series, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-05233-5_5

Download citation

Publish with us

Policies and ethics