Skip to main content
Log in

Extreme values for characteristic radii of a Poisson-Voronoi Tessellation

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

A homogeneous Poisson-Voronoi tessellation of intensity γ is observed in a convex body W. We associate to each cell of the tessellation two characteristic radii: the inradius, i.e. the radius of the largest ball centered at the nucleus and included in the cell, and the circumscribed radius, i.e. the radius of the smallest ball centered at the nucleus and containing the cell. We investigate the maximum and minimum of these two radii over all cells with nucleus in W. We prove that when \(\gamma \rightarrow \infty \), these four quantities converge to Gumbel or Weibull distributions up to a rescaling. Moreover, the contribution of boundary cells is shown to be negligible. Such approach is motivated by the analysis of the global regularity of the tessellation. In particular, consequences of our study include the convergence to the simplex shape of the cell with smallest circumscribed radius and an upper-bound for the Hausdorff distance between W and its so-called Poisson-Voronoi approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arratia, R., Goldstein, L., Gordon, L.: Poisson approximation and the Chen-Stein method. Stat. Sci. 5(4), 403—434 (1990)

    MathSciNet  Google Scholar 

  • Baccelli, F.B.: Blaszczyszyn. Stochastic geometry and wireless networks volume 2: APPLICATIONS. Foundations and TrendsⓇ in Networking 4(1–2), 1–312 (2009)

    Article  MATH  Google Scholar 

  • Baumstark, V., Last, G.: Some distributional results for Poisson-Voronoi tessellations. Adv. Appl. Probab. 39(1), 16–40 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Calka, P.: The distributions of the smallest disks containing the Poisson-Voronoi typical cell and the Crofton cell in the plane. Adv. Appl. Probab. 34(4), 702–717 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Calka, P.: An explicit expression for the distribution of the number of sides of the typical Poisson-Voronoi cell. Adv. Appl. Probab. 35(4), 863–870 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Calka, P.: Tessellations. In: New Perspectives in Stochastic Geometry, pp. 145–169. Oxford University Press, Oxford (2010)

  • Capasso, V., Villa, E.: On the geometric densities of random closed sets. Stoch. Anal. Appl. 26(4), 784–808 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • de Haan, L., Ferreira, A.: Extreme value theory. In: Springer Series in Operations Research and Financial Engineering. Springer, New York (2006). An introduction

    Book  Google Scholar 

  • Foss, S.G., Zuyev, S.A.: On a Voronoi aggregative process related to a bivariate Poisson process. Adv. Appl. Probab. 28(4), 965–981 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Graf, S., Luschgy, H.: Foundations of Quantization for Probability Distributions. Lecture Notes in Mathematics, vol. 1730. Springer-Verlag, Berlin (2000)

    Google Scholar 

  • Heinrich, L., Muche, L.: Second-order properties of the point process of nodes in a stationary Voronoi tessellation. Math. Nachr. 281(3), 350–375 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Heinrich, L., Schmidt, H., Schmidt, V.: Limit theorems for stationary tessellations with random inner cell structures. Adv. Appl. Probab. 37(1), 25–47 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Henze, N.: The limit distribution for maxima of “weighted” rth-nearest-neighbour distances. J. Appl. Probab. 19(2), 344–354 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Heveling, M., Reitzner, M.: Poisson-Voronoi approximation. Ann. Appl. Probab. 19(2), 719–736 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Hlubinka, D.: Stereology of extremes; shape factor of spheroids. Extremes 6(1), 5–24 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Hug, D., Reitzner, M., Schneider, R.: Large Poisson-Voronoi cells and Crofton cells. Adv. Appl. Probab. 36(3), 667–690 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Jammalamadaka, S.R., Janson, S.: Limit theorems for a triangular scheme of U-statistics with applications to inter-point distances. Ann. Probab. 14(4), 1347–1358 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Janson, S.: Random coverings in several dimensions. Acta Math. 156(1-2), 83–118 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Ju, L., Gunzburger, M., Zhao, W.: Adaptive finite element methods for elliptic PDEs based on conforming centroidal Voronoi-Delaunay triangulations. SIAM J. Sci. Comput. 28(6), 2023–2053 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Khmaladze, E., Toronjadze, N.: On the almost sure coverage property of Voronoi tessellation: the ℝ1 case. Adv. Appl. Probab. 33(4), 756–764 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Lantuéjoul, C., Bacro, J.N., Bel, L.: Storm processes and stochastic geometry. Extremes 14(4), 413–428 (2011)

    Article  MathSciNet  Google Scholar 

  • Leadbetter, M.R.: On extreme values in stationary sequences. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28, 289–303 (1973/74)

    Article  MathSciNet  Google Scholar 

  • Leadbetter, M.R.: Extremes and local dependence in stationary sequences. Z. Wahrsch. Verw. Gebiete 65(2), 291–306 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  • LeCaer, G., Ho, J.S.: The Voronoi tessellation generated from eigenvalues of complex random matrices. J. Phys. A :Math. Gen. 23, 3279–3295 (1990)

    Article  Google Scholar 

  • Loynes, R.M.: Extreme values in uniformly mixing stationary stochastic processes. Ann. Math. Stat. 36, 993–999 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  • Mayer, M., Molchanov, I.: Limit theorems for the diameter of a random sample in the unit ball. Extremes 10(3), 129–150 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Møller, J.: Random tessellations in R d. Adv. Appl. Probab. 21(1), 37–73 (1989)

    Article  Google Scholar 

  • Møller, J.: Lectures on Random Voronoı̆ Tessellations. Lecture Notes in Statistics, volume 87. Springer-Verlag, New York (1994)

    Book  Google Scholar 

  • Møller, J., Waagepetersen, R.P.: Statistical Inference and Simulation for Spatial Point Processes. Monographs on Statistics and Applied Probability, vol. 100. Chapman & Hall/CRC, Boca Raton, FL (2004)

  • Muche, L.: The Poisson-Voronoi tessellation: relationships for edges. Adv. Appl. Probab. 37(2), 279–296 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial tessellations: concepts and applications of Voronoi diagrams, 2nd edn. Wiley Series in Probability and Statistics. Wiley, Chichester (2000)

    Book  Google Scholar 

  • Pawlas, Z.: Local stereology of extremes. Image Anal. Stereol. 31(2), 99–108 (2012)

    Article  MathSciNet  Google Scholar 

  • Penrose, M.: Random geometric graphs. Oxford Studies in Probability, vol. 5. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  • Poupon, A.: Voronoi and Voronoi-related tessellations in studies of protein structure and interaction. Curr. Opin. Struct. Biol. 14(2), 233–241 (2004)

    Article  Google Scholar 

  • Ramella, M., Boschin, W., Fadda, D., Nonino, M.: Finding galaxy clusters using Voronoi tessellations. Astron. Astrophys. 368, 776–786 (2001)

    Article  Google Scholar 

  • Reitzner, M., Spodarev, E., Zaporozhets, D.: Set reconstruction by Voronoi cells. Adv. Appl. Probab. 44, 938–953 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Resnick, S.I.: Extreme Values, Regular Variation, and Point Processes. Applied Probability, vol. 4. A Series of the Applied Probability Trust. Springer-Verlag, New York (1987)

    Book  Google Scholar 

  • Roque, W.L.: Introduction to Voronoi diagrams with applications to robotics and landscape ecology. Proc. II Escuela de Matematica Aplicada 01, 1–27 (1997)

    Google Scholar 

  • Schneider, R., Weil, W.: Stochastic and integral geometry. Probability and its Applications (New York). Springer-Verlag, Berlin (2008)

    Google Scholar 

  • Schulte, M., Thäle, C.: The scaling limit of Poisson-driven order statistics with applications in geometric probability. Stoch. Process. Appl. 122(12), 4096–4120 (2012)

    Article  MATH  Google Scholar 

  • Smith, R.L.: Extreme value theory for dependent sequences via the Stein-Chen method of Poisson approximation. Stoch. Process. Appl. 30(2), 317–327 (1988)

    Article  MATH  Google Scholar 

  • Zessin, H.: Point processes in general position. J. Contemp. Math. Anal., Armen. Acad. Sci. 43(1), 59–65 (2008)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Calka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calka, P., Chenavier, N. Extreme values for characteristic radii of a Poisson-Voronoi Tessellation. Extremes 17, 359–385 (2014). https://doi.org/10.1007/s10687-014-0184-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-014-0184-y

Keywords

AMS 2010 Subject Classifications:

Navigation