Skip to main content

Mechanical Properties of Aging Skeletal Muscle

  • Chapter
  • First Online:
Mechanical Properties of Aging Soft Tissues

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

Aging skeletal muscle exhibits changes in the tissue architecture, muscle fiber type, and other molecular substructures. These changes often result in sarcopenia, characterized by losses in muscle mass, force generation, contractile velocity, and power. Total force generation is the primary indicator of skeletal muscle strength, and is the summation of the active force produced by muscle fibers and a passive force from the tissue stretching. The elastic and viscoelastic mechanical properties of skeletal muscle can be measured experimentally in vitro, in situ, as well as in vivo for both active and passive muscle. These properties can provide insight into the causes of decreased force generation, but few studies have explored how they change with age. Although some aging-induced increases in passive elastic stiffness have been documented, their effects on overall muscle function are still unknown. A more complete description of aging effects requires further research into changes in the viscoelastic properties of skeletal muscle and their underlying structural mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen JL (2003) Muscle fibre type adaptation in the elderly human muscle. Scand J Med Sci Sports 13(1):40–47

    Article  Google Scholar 

  2. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100

    Article  Google Scholar 

  3. Baldwin CE, Paratz JD, Bersten AD (2013) Muscle strength assessment in critically ill patients with handheld dynamometry: an investigation of reliability, minimal detectable change, and time to peak force generation. J Crit Care 28(1):77–86

    Article  Google Scholar 

  4. Barnes MJ, Mundel T, Stannard SR (2011) A low dose of alcohol does not impact skeletal muscle performance after exercise-induced muscle damage. Eur J Appl Physiol 111(4):725–729

    Article  Google Scholar 

  5. Blemker SS, Delp SL (2005) Three-dimensional representation of complex muscle architectures and geometries. Ann Biomed Eng 33(5):661–673

    Article  Google Scholar 

  6. Boisgontier M, Vuillerme N, Iversen MD (2010) Superimposed electrical stimulation decreases maximal grip force. J Sports Med Phys Fitness 50(2):152–158

    Google Scholar 

  7. Bosboom EM et al (2001) Passive transverse mechanical properties of skeletal muscle under in vivo compression. J Biomech 34(10):1365–1368

    Article  Google Scholar 

  8. Campbell MJ, McComas AJ, Petito F (1973) Physiological changes in ageing muscles. J Neurol Neurosurg Psychiatry 36(2):174–182. http://www.ncbi.nlm.nih.gov/pubmed/4708452

    Google Scholar 

  9. Coggan AR et al (1992) Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women. J Gerontol 47(3):B71–B76

    Article  Google Scholar 

  10. Deffieux T et al (2008) Assessment of the mechanical properties of the musculoskeletal system using 2-D and 3-D very high frame rate ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 55(10):2177–2190

    Article  Google Scholar 

  11. Feland JB et al (2001) The effect of duration of stretching of the hamstring muscle group for increasing range of motion in people aged 65 years or older. Phys Ther 81:1110–1117

    Google Scholar 

  12. Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York

    Book  Google Scholar 

  13. Fung YC (1967) Elasticity of soft tissues in simple elongation. Am J Physiol 213(6):1532–1544

    Google Scholar 

  14. Gajdosik RL (2001) Passive extensibility of skeletal muscle: review of the literature with clinical implications. Clin Biomech (Bristol, Avon) 16(2):87–101

    Google Scholar 

  15. Gajdosik RL et al. (2005) Viscoelastic properties of short calf muscle-tendon units of older women: effects of slow and fast passive dorsiflexion stretches in vivo. Eur J Appl Physiol 95(2–3):131–139

    Google Scholar 

  16. Gao Y, Kostrominova TY et al (2008a) Age-related changes in the mechanical properties of the epimysium in skeletal muscles of rats. J Biomech 41(2):465–469

    Google Scholar 

  17. Gao Y, Waas AM et al (2008b) Micromechanical modeling of the epimysium of the skeletal muscles. J Biomech 41(1):1–10

    Google Scholar 

  18. Gao Y, Wineman AS, Waas AM (2008c) Mechanics of muscle injury induced by lengthening contraction. Ann Biomed Eng 36(10):1615–1623

    Google Scholar 

  19. Gao Y, Waas AM, Winema AS (2007) Mechanics of injury to muscle fibers. J Mech Med Biol 7(4):381–394

    Article  Google Scholar 

  20. Gao Y, Winema AS, Waas AM (2009) Time-dependent lateral transmission of force in skeletal muscle. Proc Roy Soc A 465(2108):2441–2460

    Article  MATH  Google Scholar 

  21. Gennisson J-L et al (2010) Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol 36(5):789–801

    Article  Google Scholar 

  22. Gillies AR, Lieber RL (2011) Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44(3):318–331

    Google Scholar 

  23. Gosselin LE et al (1998) Effect of exercise training on passive stiffness in locomotor skeletal muscle: role of extracellular matrix. J Appl Physiol 85(3):1011–1016

    MathSciNet  Google Scholar 

  24. Gras L-L et al (2012) Hyper-elastic properties of the human sternocleidomastoideus muscle in tension. J Mech Behav Biomed Mater 15:131–140

    Article  Google Scholar 

  25. Han L, Noble JA, Burcher M (2003) A novel ultrasound indentation system for measuring biomechanical properties of in vivo soft tissue. Ultrasound Med Biol 29(6):813–823

    Article  Google Scholar 

  26. Hasson CJ, Miller RH, Caldwell GE (2011) Contractile and elastic ankle joint muscular properties in young and older adults. PLoS ONE 6(1):e15953

    Article  Google Scholar 

  27. Hoang PD et al (2005) A new method for measuring passive length-tension properties of human gastrocnemius muscle in vivo. J Biomech 38(6):1333–1341

    Article  Google Scholar 

  28. Huijing P (1999) Muscular force transmission: a unified, dual or multiple system? A review and some explorative experimental results. Arch Physiol Biochem 107(4):292–311

    Article  Google Scholar 

  29. Irwin CB, Sesto ME (2010) Reliability and validity of the multiaxis profile dynamometer with younger and older participants. J Hand Ther 23(3):281–8; quiz 289

    Google Scholar 

  30. Janssen I et al (2000) Skeletal muscle mass and distribution in 468 men and women aged 18–88 year. J Appl Physiol (1985) 89(1):81–88

    Google Scholar 

  31. Kaufman KR, An KN, Chao EY (1989) Incorporation of muscle architecture into the muscle length-tension relationship. J Biomech 22(8–9):943–948

    Article  Google Scholar 

  32. Klitgaard H, Bergman O et al (1990) Co-existence of myosin heavy chain I and IIa isoforms in human skeletal muscle fibres with endurance training. Pflugers Arch 416(4):470–472

    Article  Google Scholar 

  33. Klitgaard H, Mantoni M et al (1990) Function, morphology and protein expression of ageing skeletal muscle: a cross-sectional study of elderly men with different training backgrounds. Acta Physiol Scand 140(1):41–54

    Article  Google Scholar 

  34. Kovanen V, Suominen H (1989) Age- and training-related changes in the collagen metabolism of rat skeletal muscle. Eur J Appl Physiol Occup Physiol 58(7):765–771

    Article  Google Scholar 

  35. Kragstrup TW, Kjaer M, Mackey AL (2011) Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging. Scand J Med Sci Sports 21(6):749–757

    Article  Google Scholar 

  36. Larsson L (1978) Morphological and functional characteristics of the ageing skeletal muscle in man. A cross-sectional study. Acta Physiol Scand Suppl 457:1–36

    Article  Google Scholar 

  37. Lexell J, Henriksson-Larsen K, Sjostrom M (1983) Distribution of different fibre types in human skeletal muscles. 2. A study of cross-sections of whole m. vastus lateralis. Acta Physiol Scand 117(1):115–122

    Article  Google Scholar 

  38. Lexell J, Taylor CC, Sjostrom M (1988) What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 84(2–3):275–294

    Article  Google Scholar 

  39. Li J, Luo XY, Kuang ZB (2001) A nonlinear anisotropic model for porcine aortic heart valves. J Biomech 34(10):1279–1289

    Article  Google Scholar 

  40. Lieber RL (2002) Skeletal muscle structure, function, & plasticity, 2nd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  41. Lieber RL, Friden J (2000) Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 23(11):1647–1666

    Article  Google Scholar 

  42. Linder-Ganz E, Gefen A (2004). Mechanical compression-induced pressure sores in rat hindlimb: muscle stiffness, histology, and computational models. J Appl physiol (Bethesda, Md: 1985) 96(6):2034–49

    Google Scholar 

  43. Van Loocke M, Lyons CG, Simms CK (2006) A validated model of passive muscle in compression. J Biomech 39(16):2999–3009

    Article  Google Scholar 

  44. Van Loocke M, Lyons CG, Simms CK (2008) Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling. J Biomech 41(7):1555–1566

    Article  Google Scholar 

  45. Lorenz T, Campello M (2001) Biomechanics of Skeletal Muscle. In: Nordin M, Frankel V (eds) Basic biomechanics of the musculoskeletal system. Lippincott Willams & Wilkins, Philadelphia, pp 148–171

    Google Scholar 

  46. Lovering RM, De Deyne PG (2004) Contractile function, sarcolemma integrity, and the loss of dystrophin after skeletal muscle eccentric contraction-induced injury. Am J Physiol Cell Physiol 286(2):C230–C238

    Article  Google Scholar 

  47. Maïsetti O et al (2012) Characterization of passive elastic properties of the human medial gastrocnemius muscle belly using supersonic shear imaging. J Biomech 45(6):978–984

    Article  Google Scholar 

  48. Morrow DA et al (2010) Transversely isotropic tensile material properties of skeletal muscle tissue. J Mech Behav Biomed Mater 3(1):124–129

    Article  MathSciNet  Google Scholar 

  49. Moss RL, Halpern W (1977) Elastic and viscous properties of resting frog skeletal muscle. Biophys J 17:213–228

    Article  Google Scholar 

  50. Muhl ZF (1982) Active length-tension relation and the effect of muscle pinnation on fiber lengthening. J Morphol 173(3):285–292

    Article  Google Scholar 

  51. Muraoka T et al (2005) In vivo passive mechanical properties of the human gastrocnemius muscle belly. J Biomech 38(6):1213–1219

    Article  Google Scholar 

  52. Narici MV et al (2003) Effect of aging on human muscle architecture. J Appl Physiol 95(6):2229–2234

    Google Scholar 

  53. Narici MV, Maffulli N (2010) Sarcopenia: characteristics, mechanisms and functional significance. Br Med Bull 95:139–159

    Article  Google Scholar 

  54. Narici MV, Maffulli N, Maganaris CN (2008) Ageing of human muscles and tendons. Disabil Rehabil 30(20–22):1548–1554

    Article  Google Scholar 

  55. Nordez A et al (2010) Improvements to Hoang et al’.s method for measuring passive length-tension properties of human gastrocnemius muscle in vivo. J Biomech 43(2):379–382

    Article  Google Scholar 

  56. Nordez A, Hug F (2010) Muscle shear elastic modulus measured using supersonic shear imaging is highly related to muscle activity level. J Appl Physiol (Bethesda, Md: 1985) 108(5):1389–94

    Google Scholar 

  57. Ogden RW (1997) Non-linear elastic deformations. Courier Dover Publications, Mineola

    Google Scholar 

  58. Overend TJ et al (1992) Thigh composition in young and elderly men determined by computed tomography. Clin Physiol (Oxford, England) 12(6):629–640

    Google Scholar 

  59. Purslow PP (2010) Muscle fascia and force transmission. J Bodywork Mov Ther 14:411–417

    Article  Google Scholar 

  60. Purslow PP (2008) The extracellular matrix of skeletal and cardiac muscle. In: Fratzl P (ed) Collagen: structure and mechanics. Springer, New York, pp 325–358

    Chapter  Google Scholar 

  61. Purslow PP, Duance VC (1990) Structure and function of intramuscular connective tissue. In: Hukins DWL (ed) Connective tissue matrix. CRC Press, Boca Raton, pp 127–166

    Google Scholar 

  62. Rader EP, Faulkner JA (2006) Effect of aging on the recovery following contraction-induced injury in muscles of female mice. J Appl Physiol (1985) 101(3):887–892

    Google Scholar 

  63. Rice CL et al (1989) Arm and leg composition determined by computed tomography in young and elderly men. Clin Physiol 9(3):207–220

    Article  Google Scholar 

  64. Rodrigues CJ, Rodrigues AJ Jr, Bohm GM (1996) Effects of aging on muscle fibers and collagen content of the diaphragm: a comparison with the rectus abdominis muscle. Gerontology 42(4):18–28

    Google Scholar 

  65. Rodrigues CJ, Rodrigues AJ Jr (2000) A comparative study of aging of the elastic fiber system of the diaphragm and the rectus abdominis muscles in rats. Braz J Med Biol Res 33(12):1449–1454

    Article  Google Scholar 

  66. Rosant C, Nagel M-D, Pérot C (2007) Aging affects passive stiffness and spindle function of the rat soleus muscle. Exp Gerontol 42(4):301–308

    Article  Google Scholar 

  67. Sipilä S, Suominen H (1995) Effects of strength and endurance training on thigh and leg muscle mass and composition in elderly women. J Appl Physiol (Bethesda, Md: 1985) 78(1):334–340

    Google Scholar 

  68. Sled EA et al (2010) Effect of a home program of hip abductor exercises on knee joint loading, strength, function, and pain in people with knee osteoarthritis: a clinical trial. Phys Ther 90(6):895–904

    Article  Google Scholar 

  69. Su J, Zou H, Guo T (2009) The study of mechanical properties on soft tissue of human forearm in vivo. In: 2009 3rd international conference on bioinformatics and biomedical engineering, pp 1–4

    Google Scholar 

  70. Teran J et al (2003) Finite volume methods for the simulation of skeletal muscle. In Eurographics/SIGGRAPH symposium on computer animation, pp 68–75

    Google Scholar 

  71. Thom JM et al (2007) Influence of muscle architecture on the torque and power-velocity characteristics of young and elderly men. Eur J Appl Physiol 100(5):613–619

    Article  Google Scholar 

  72. Tian M et al (2010) Stress relaxation of human ankles is only minimally affected by knee and ankle angle. J Biomech 43(5):990–993

    Article  Google Scholar 

  73. Wang K (1996) Titin/connectin and neublin: giant protein rulers of muscle structure and function. Adv Biophys 33:123–134

    Article  Google Scholar 

  74. Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135:107–128

    Article  MATH  Google Scholar 

  75. Widmaier EP, Raff H, Strang KT (2008) Vander’s human physiology: the mechanisms of body function, 11th edn. The McGraw-Hill Company, New York

    Google Scholar 

  76. Young A, Stokes M, Crowe M (1985) The size and strength of the quadriceps muscles of old and young men. Clin Physiol 5(2):145–154

    Article  Google Scholar 

  77. Zhang C, Gao Y (2012) Finite element analysis of mechanics of lateral transmission of force in single muscle fiber. J Biomech 45(11):2001–2006

    Article  Google Scholar 

  78. Zheng Y, Mak a F. & Lue, B., 1999. Objective assessment of limb tissue elasticity: development of a manual indentation procedure. J Rehabil Res Dev 36(2):71–85

    Google Scholar 

  79. Zimmerman SD et al (1993) Age and training alter collagen characteristics in fast- and slow-twitch rat limb muscle. J Appl Physiol (1985) 75(4):1670–1674

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxin Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gao, Y., Leineweber, M. (2015). Mechanical Properties of Aging Skeletal Muscle. In: Derby, B., Akhtar, R. (eds) Mechanical Properties of Aging Soft Tissues. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-03970-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03970-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03969-5

  • Online ISBN: 978-3-319-03970-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics