Skip to main content

Introduction

  • Chapter
  • First Online:
From Robot to Human Grasping Simulation

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 19))

  • 1977 Accesses

Abstract

The human hand and its dexterity in grasping and manipulating objects are some of the hallmarks of the human species. Most of human mechanical interactions with the surrounding world are performed by the hands. We use our hands to perform very different tasks; from exerting high forces (e.g. using a hammer or helping each other carry heavy things) to executing very precise movements (e.g. cutting with a surgical tool or playing an instrument). We also use them to express our feelings, utilising them as a dominant part of our body language. This versatility is possible because of a very complex constitution: a great number of bones connected through different joints, a complicated musculature and a dense nervous system. This complexity is already evident from the kinematics point of view, with more than 23 % of freedom [1] controlled by muscles, tendons and ligaments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brand, P., Hollister, A.: Clinical mechanics of the hand. Elsevier Science Health Science div (1992)

    Google Scholar 

  2. Napier, J.R., Tuttle, R.: Hands. Princeton University Press, Princeton (1993), http://www.amazon.com/Hands-John-Napier/dp/0691025479

  3. Santello, M., Flanders, M., Soechting, J.F.: Postural hand synergies for tool use. J. Neurosci.: Offi. J. Soc., Neurosci. 18(23), 10105–10115 (1998)

    Google Scholar 

  4. Johansson, R.S., Westling, G., Backstrom, A., Flanagan, J.R.: Eye-hand coordination in object manipulation. J. Neurosci.: Off. J. Soc., Neurosci. 21(17), 6917–6932 (2001)

    Google Scholar 

  5. Gentilucci, M., Caselli, L., Secchi, C.: Finger control in the tripod grasp. Experimental brain research. Experimentelle Hirnforschung. Experimentation Cerebrale 149(3), 351–360 (2003)

    Google Scholar 

  6. Winges, S.A., Kornatz, K.W., Santello, M.: Common input to motor units of intrinsic and extrinsic hand muscles during two-digit object hold. J. Neurophysiol. 99(3), 1119–1126 (2008)

    Article  Google Scholar 

  7. Zatsiorsky, V.M., Gao, F., Latash, M.L.: Finger force vectors in multi-finger prehension. J. Biomech. 36(11), 1745–1749 (2003)

    Google Scholar 

  8. Zatsiorsky, V.M., Gao, F., Latash, M.L.: J. Neurophysiol. 95(4), 2513–2529 (2006)

    Article  Google Scholar 

  9. Budgeon, M.K., Latash, M.L., Zatsiorsky, V.M.: Digit force adjustments during finger addition/removal in multi-digit prehension. Experimental Brain Research 189(3), 345 (2008)

    Google Scholar 

  10. Domalain, M., Vigouroux, L., Danion, F., Sevrez, V., Berton, E.: Effect of object width on precision grip force and finger posture. Ergonomics 51(9), 1441–1453 (2008)

    Article  Google Scholar 

  11. Kang, S.B., Ikeuchi, K.: Toward automatic robot instruction from perception—mapping human grasps to manipulator grasps. IEEE Trans. Robot. Autom. 13(1), 81 (1997)

    Google Scholar 

  12. Kaneko, M., Shirai, T., Tsuji, T.: Scale-dependent grasp. IEEE Trans. Syst., Man Cybern. Part A. Syst. Humans 30(6), 806 (2000)

    Google Scholar 

  13. Miller, A.T., Allen, P.K., Santos, V., Valero-Cuevas, F.J.: From robotic hands to human hands: a visualization and simulation engine for grasping research. Indus. Rob. 32(1), 55 (2005)

    Article  Google Scholar 

  14. Armstrong, T.J., Chaffin, D.B.: An investigation of the relationship between displacements of the finger and wrist joints and the extrinsic finger flexor tendons. J. Biomech. 11(3), 119 (1978)

    Article  Google Scholar 

  15. Valero-Cuevas, F.J., Johanson, M.E., Towles, J.D.: Towards a realistic biomechanical model of the thumb: the choice of kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters. J. Biomech. 36(7), 1019–1030 (2003)

    Article  Google Scholar 

  16. Hammond, E.R.A., Shay, B.L., Szturm, T.: Objective evaluation of fine motor manipulation-a new clinical tool. J. Hand Ther.: Off. J. Am. Soc. Hand Ther. 22(1), 28–35; quiz 36 (2009)

    Google Scholar 

  17. Leijnse, J., Kalker, J.J.: A 2-dimensional kinematic model of the lumbrical in the human finger. J. Biomech. 28(3), 237–249 (1995)

    Google Scholar 

  18. Spoor, C.W.: Balancing a force on the fingertip of a two-dimensional finger model without intrinsic muscles. J. Biomech. 16(7), 497–504 (1983)

    Article  Google Scholar 

  19. Spoor, C.W., Landsmeer, J.: Analysis of zigzag movement of human finger under influence of extensor digitorum tendon and deep flexor tendon. J. Biomech. 9(9), 561–566 (1976)

    Article  Google Scholar 

  20. Storace, A., Wolf, B.: Functional-analysis of the role of the finger tendons. J. Biomech. 12(8), 575–578 (1979)

    Article  Google Scholar 

  21. Storace, A., Wolf, B.: Kinematic analysis of the role of the finger tendons. J. Biomech. 15(5), 391–393 (1982)

    Article  Google Scholar 

  22. Thomas, D.H., Long, C., Landsmeer, J.M.F.: Biomechanical consideration of lumbricalis behaviour in the human finger. J. Biomech. 1, 107–115 (1968)

    Article  Google Scholar 

  23. Buchner, H.J., Hines, M.J., Hemami, H.: A dynamic-model for finger interphalangeal coordination. J. Biomech. 21(6), 459–468 (1988)

    Article  Google Scholar 

  24. Lee, J.W., Rim, K.: Maximum finger force prediction using a planar simulation of the middle finger. Proc. Instn. Mech. Eng. Part H: J. Eng. Med. 204, 169–178 (1990)

    Article  Google Scholar 

  25. Smith, E.M., Pearson, J.R., Juvinall, R.C., Bender, L.F.: Role of finger flexors in rheumatoid deformities of metacarpophalangeal joints. Arthritis Rheum 7(5P1), 467 (1964)

    Google Scholar 

  26. Biryukova, E.V., Yourovskaya, V.Z.: A model of human hand dynamics, pp. 107–122. Advances in the Biomechanics of the Hand and Wrist, Plenum Press (1994)

    Google Scholar 

  27. Casolo, F., Lorenzi, V.: Finger mathematical modelling and rehabilitation, pp. 197–223. Advances in the Biomechanics of the Hand and Wrist, Plenum Press (1994)

    Google Scholar 

  28. Fok, K.S., Chou, S.M.: Development of a finger biomechanical model and its considerations. J. Biomech. 43(4), 701–713 (2010)

    Google Scholar 

  29. Kamper, D., Fischer, H., Cruz, E.: Impact of finger posture on mapping from muscle activation to joint torque. Clin. Biomech. 21(4), 361–369 (2006)

    Google Scholar 

  30. Kubus, D., Iser, R., Winkelbach, S., Wahl, F.M.: Efficient parallel random sample matching for pose estimation, localization, and related problems. In: Kröger, T., Wahl, F.M. (eds.) Advances in Robotics Research, pp. 239–250. Springer Berlin Heidelberg (2009)

    Google Scholar 

  31. Lee, S.W., Chen, H., Towles, J.D., Kamper, D.G.: Estimation of the effective static moment arms of the tendons in the index finger extensor mechanism. J. Biomech. 41(7), 1567–1573 (2008)

    Article  Google Scholar 

  32. Lee, K.S., Mo, S.M., Hwang, J.J., Wang, H., Jung, M.C.: Relaxed hand postures. Japan. J. Ergonomics 44(Supplement), 436–439 (2008)

    Article  Google Scholar 

  33. Qiu, D., Fischer, H.C., Kamper, D.G.: Muscle Activation Patterns during Force Generation of the Index Finger. In: Engineering in: Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, pp. 3987-3990, 2009

    Google Scholar 

  34. Roloff, I., Schoffl, V., Vigouroux, L., Quaine, F.: Biomechanical model for the determination of the forces acting on the finger pulley system. J. Biomech. 39(5), 915–923 (2006)

    Article  Google Scholar 

  35. Sancho-Bru, J.L., Perez-Gonzalez, A., Vergara-Monedero, M., Giurintano, D.: A 3-d dynamic model of human finger for studying free movements. J. Biomech. 34(11), 1491–1500 (2001)

    Article  Google Scholar 

  36. Sancho-Bru, J.L., Giurintano, D.J., Pérez-González, A., Vergara, M.: Optimum tool handle diameter for a cylinder grip. J. Hand Ther.: Off. J. Am. Soc. Hand Ther. 16(4), 337–342 (2003)

    Article  Google Scholar 

  37. Sancho-Bru, J.L., Perez-Gonzalez, A., Vergara, M., Giurintano, D.J.: A 3d biomechanical model of the hand for power grip. J. Biomech. Eng. 125(1), 78–83 (2003)

    Article  Google Scholar 

  38. Sancho-Bru, J., Vergara, M., Rodríguez-Cervantes, P.J., Giurintano, D., Pérez-González, A.: Scalability of the muscular action in a parametric 3d model of the index finger. Ann. Biomed. Eng. 36, 102–107 (2008)

    Article  Google Scholar 

  39. Valero-Cuevas, F.J.: Predictive modulation of muscle coordination pattern magnitude scales fingertip force magnitude over the voluntary range. J. Neurophysiol. 83(3), 1469–1479 (2000)

    Google Scholar 

  40. Valero-Cuevas, F.J.: An integrative approach to the biomechanical function and neuromuscular control of the fingers. J. Biomech. 38(4), 673–684 (2005)

    Google Scholar 

  41. Vigouroux, L., Quaine, F., Labarre-Vila, A., Moutet, F.: Estimation of finger muscle tendon tensions and pulley forces during specific sport-climbing grip techniques. J. Biomech. 39(14), 2583–2592 (2006)

    Article  Google Scholar 

  42. Vigouroux, L., Ferry, M., Colloud, F., Paclet, F., Cahouet, V., Quaine, F.: Is the principle of minimization of secondary moments validated during various fingertip force production conditions? Human Mov. Sci. 27(3), 396–407 (2008)

    Google Scholar 

  43. Wu, J.Z., An, K.N., Cutlip, R.G., Dong, R.G.: A practical biomechanical model of the index finger simulating the kinematics of the muscle/tendon excursions. Bio-Med. Mater. Eng. 20(2), 89–97 (2010)

    Google Scholar 

  44. Endo, Y., Kanai, S., Kishinami, T., Miyata, N., Kouchi, M., Mochimaru, M.: Virtual grasping assessment using 3d digital hand model. In: 10th Annual Applied Ergonomics Conference: Celebrating the Past: Shaping the Future (12 March 2007 through 15 March 2007)

    Google Scholar 

  45. Endo, Y., Kanai, S., Miyata, N., Kouchi, M., Mochimaru, M., Konno, J., Ogasawara, M., Shimokawa, M.: Optimization-based grasp posture generation method of digital hand for virtual ergonomics assessment. SAE Int. J. Passeng. Cars - Electron. Electr. Syst. 1(1), 590–598 (2008)

    Google Scholar 

  46. Goussous, F.A.: Grasp planning for digital humans. Ph.D. thesis, Iowa University (2007)

    Google Scholar 

  47. Kawaguchi, K.: Database-driven grasp synthesis and ergonomic assessment for handheld product design. Lect. Notes Comput. Sci. 5620, 642–652 (2009)

    Article  Google Scholar 

  48. Wren, D., Fisher, R.: Dextrous hand grasping strategies using preshapes and digit trajectories. In: IEEE International Conference on Systems, Man and, Cybernetics. vol. 1, pp. 910–915, 1995

    Google Scholar 

  49. Miller, A.T., Knoop, S., Christensen, H., Allen, P.K.: Automatic grasp planning using shape primitives. In: Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE International Conference on. vol. 2, pp. 1824–1829. IEEE, 2003

    Google Scholar 

  50. Bicchi, A.: On the closure properties of Robotic grasping. Int. J. Rob. Res. 14, 319–334 (1995)

    Article  Google Scholar 

  51. Borst, C., Fischer, M., Hirzinger, G.: Grasp planning: how to choose a suitable task wrench space. IEEE, 2004.

    Google Scholar 

  52. Li, Z., Sastry, S.: Task-oriented optimal grasping by multifingered robot hands. IEEE J. Rob. Autom. 4(1), 32–44 (1987)

    Article  Google Scholar 

  53. Zhu, X., Wang, J.: Synthesis of force-closure grasps on 3-d objects based on the q distance. IEEE Transactions on Robotics 19(4), 669–679 (2003), http://dblp.uni-trier.de/db/journals/trob/trob19.html#ZhuW03

    Google Scholar 

  54. Jacobsen, S.C., Iversen, E.K., Knutti, D.F., Johnson, R.T., Biggers, K.B.: Design of the Utah/MIT dextrous hand. In: Robotics and Automation. Proceedings. IEEE International Conference on 1986, vol. 3, pp. 1520–1532, IEEE, 1986

    Google Scholar 

  55. Aleotti, A., Caselli, S.: Grasp recognition in virtual reality for robot pre grasp planning by demonstration. In: Proceedings - IEEE International Conference on Robotics and Automation, p. 2801, 2006

    Google Scholar 

  56. Romero, J., Kjellstrm, H., Kragic, D.: Human-to-robot mapping of grasps. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, WS on Grasp and Task Learning by Imitation, 2008.

    Google Scholar 

  57. Harada, K., Kaneko, K., Kanehiro, F.: Fast grasp planning for hand/arm systems based on convex model. Proceedings - IEEE International Conference on Robotics and Automation, p. 1162, 2008.

    Google Scholar 

  58. Molina-Vilaplana, J., López-Coronado, J.: Neural modelling of hand grip formation during reach to grasp. Neurocomputing 71(1–3), 411 (2007)

    Article  Google Scholar 

  59. Parada, J.E., Nava, N.E., Ceccarelli, M.: A Methodology for the Design of Robotic Hands with Multiple Fingers. Int. J. Adv. Rob. Syst. 5(2), 177–184 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz León .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

León, B., Morales, A., Sancho-Bru, J. (2014). Introduction. In: From Robot to Human Grasping Simulation. Cognitive Systems Monographs, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-01833-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01833-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01832-4

  • Online ISBN: 978-3-319-01833-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics