Skip to main content

Tailored Macromolecules Versus Nanoparticles as Additives for Mechanical Reinforcement of NCO-sP(EO-stat-PO) Hydrogels

  • Conference paper
  • First Online:
Intelligent Hydrogels

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 140))

Abstract

Hydrogels are three dimensional networks of hydrophilic polymers that exhibit high equilibrium water contents (up to 99 w/w-%) in aqueous environment. Beside the manifold advantages such as intrinsic biocompatibility, low friction and enormous swelling behaviour, this high water content also results in an intrinsically low mechanical stability. Different reinforcement strategies have been developed that rely on the strengthening by a second component. In this study we present the improvement of six arm star-shaped poly(ethylene oxide-stat-propylene oxide) (sPEOPO) primary networks by two different strategies: incorporation of amino-functionalized silica nanoparticles (nanocomposites, NC) and generation of interpenetrating networks (IPNs) by addition of tailored linear triblock copolymers. The compression moduli and mechanical stress-at-break of both hydrogel systems are compared and discussed. In comparison to sPEOPO, the NC hydrogels demonstrate a strengthening effect with a 2.5 times higher compression stress-at-break whereas the IPN increases the modulus up to a factor of 1.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007

    Article  CAS  Google Scholar 

  2. Peppas NA (1987) Hydrogels in medicine and pharmacy: properties and applications, vol 3. CRC Press, Boca Raton

    Google Scholar 

  3. Corkhill PH, Hamilton CJ, Tighe BJ (1989) Synthetic hydrogels VI. Hydrogel composites as wound dressings and implant materials. Biomaterials 10:3–10

    Article  CAS  Google Scholar 

  4. Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–19

    Article  CAS  Google Scholar 

  5. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880

    Article  CAS  Google Scholar 

  6. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12

    Article  CAS  Google Scholar 

  7. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  CAS  Google Scholar 

  8. Darwis D (2009) Role of radiation processing in production of hydrogels for medical applications. Atom Indonesia 2:85–104

    Google Scholar 

  9. Gong J, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158

    Article  CAS  Google Scholar 

  10. Millar JR (1960) Interpenetrating polymer networks. Styrene–divinylbenzene copolymers with two and three interpenetrating networks, and their sulphonates. J Chem Soc 1311–1317. http://pubs.rsc.org/en/content/articlelanding/1960/JR/jr9600001311#!divAbstract

  11. Shibayama K, Suzuki Y (1967) Viscoelastic properties of multiple network polymers. IV. Copolymers of styrene and divinylbenzene. Rubber Chem Technol 40:476–483

    Article  Google Scholar 

  12. Sperling LH, Friedman DW (1969) Synthesis and mechanical behavior of interpenetrating polymer networks: Poly(ethyl acrylate) and polystyrene. J Polym Sci Part A-2 7:425–427

    Article  CAS  Google Scholar 

  13. Sperling LH, George HF, Huelck V, Thomas DA (1970) Viscoelastic behavior of interpenetrating polymer networks: poly(ethyl acrylate)–poly(methyl methacrylate). J Appl Polym Sci 14:2815–2824

    Article  CAS  Google Scholar 

  14. Sperling LH, Taylor DW, Kirpatrich ML, George HF, Bardman RD (1970) Glass-rubber transition behaviour and compatibility of polymer pairs: poly(ethyl acrylate) and poly(methyl methacrylate). J Appl Polym Sci 14:73–78

    Article  CAS  Google Scholar 

  15. Klempner D, Frisch HL, Frisch KC (1971) Topologically interpenetrating polymeric networks. J Elastoplastics 3:2–18

    CAS  Google Scholar 

  16. Klempner D, Frisch HL, Frisch KC (1970) Topologically interpenetrating elastomeric networks. J Polym Sci Part A-2 8:921–935

    Article  CAS  Google Scholar 

  17. Frisch HL, Klempner D, Frisch KC, Kwei TK (1970) Topologically interpenetrating elastomeric networks. Polym Prepr 11:483

    Google Scholar 

  18. Matsuo T, Kwei TK, Klempner D, Frisch HL (1970) Structure–property relationships in polyacrylate-poly(urethane-urea) interpenetrating polymer networks. Polym Eng Sci 10:327–331

    Article  CAS  Google Scholar 

  19. Curtius AJ, Covitch MJ, Thomas DA, Sperling LH (1972) Polybutadiene/polystyrene interpenetrating polymer networks. Polym Eng Sci 12:101–108

    Article  CAS  Google Scholar 

  20. Huelck V, Thomas DA, Sperling LH (1972) Interpenetrating polymer networks of poly(ethyl acrylate) and poly(styrene-co-methyl methacrylate). I. Morphology via electron microscopy. Macromolecules 5:340–347

    Article  CAS  Google Scholar 

  21. Huelck V, Thomas DA, Sperling LH (1972) Interpenetrating polymer networks of poly(ethyl acrylate) and poly(styrene-co-methyl methacrylate). II. Physical and mechanical behaviour. Macromolecules 5:348–353

    Google Scholar 

  22. Rakovsky A, Marbach D, Lotan N, Lanir Y (2009) Poly(ethylene glycol)-based hydrogels as cartilage substitutes: synthesis and mechanical characteristics. J Appl Polym Sci 112:390–401

    Article  CAS  Google Scholar 

  23. Dekosky BJ, Dormer NH, Ingavle GC, Roatch CH, Lomakin J, Detamore MS, Gehrke SH (2010) Hierarchically designed agarose and poly(Ethylene Glycol) interpenetrating network hydrogels for cartilage tissue engineering. Tissue Eng Part C 16:1533–1542

    Article  CAS  Google Scholar 

  24. Gupta RK, Kennel E, Kim K-J (2010) Polymer nanocomposites handbook. CRS Press, Boca Raton

    Google Scholar 

  25. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575

    Article  CAS  Google Scholar 

  26. Liu Y, Zhu M, Liu X, Zhang W, Sun B, Chen Y, Adler H-JP (2006) High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics. Polymer 47:1–5

    Article  CAS  Google Scholar 

  27. Haraguchi K, Li H-J (2006) Mechanical properties and structure of polymer-clay nanocomposite gels with high clay content. Macromolecules 39:1898–1903

    Article  CAS  Google Scholar 

  28. Haraguchi K (2007) Nanocomposite hydrogels. Curr Option Solid State Mater Sci 11:47–54

    Article  CAS  Google Scholar 

  29. Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11

    Article  CAS  Google Scholar 

  30. Haraguchi K (2011) Stimuli-responsive nanocomposite gels. Colloid Polym Sci 289:455–473

    Article  CAS  Google Scholar 

  31. Qin X, Zhao F, Liu Y, Wang H, Feng S (2009) High mechanical strength hydrogels preparation using hydrophilic reactive microgels as crosslinking agents. Colloid Polym Sci 287:621–625

    Article  CAS  Google Scholar 

  32. Dalton PD, Hostert C, Albrecht K, Moeller M, Groll J (2008) Structure and properties of urea-crosslinked star poly[(ethylene oxide)-ran-(propylene oxide)] hydrogels. Macromol Biosci 8:923–931

    Article  CAS  Google Scholar 

  33. Goetz H, Uwe B, Bartelink CF, Gruenbauer HJ, Moeller M (2002) Preparation of isophorone diisocyanate terminated star polyethers. Macromol Mater Eng 287:223–230

    Article  Google Scholar 

  34. Green TW, Wuts PG (1999) Protective groups in organic synthesis. Wiley, New York, pp 65–67 and 404–408

    Google Scholar 

  35. Stober W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  36. ISO 604: 2002(E): Plastics – determination of compressive properties

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Groll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Harrass, K., Hildebrandt, H., Moeller, M., Groll, J. (2013). Tailored Macromolecules Versus Nanoparticles as Additives for Mechanical Reinforcement of NCO-sP(EO-stat-PO) Hydrogels. In: Sadowski, G., Richtering, W. (eds) Intelligent Hydrogels. Progress in Colloid and Polymer Science, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-01683-2_7

Download citation

Publish with us

Policies and ethics