Skip to main content

Abstract

Metabolic processes are dynamic, finely regulated and interconnected. In order to characterize metabolic networks and their functional operation, quantitative knowledge of intracellular fluxes is required. Whereas metabolite concentrations can be directly estimated, the set of molecular fluxes through each reaction within a metabolic network can only be estimated indirectly. Isotope labelling experiments with 13C-labelled tracers, using nuclear magnetic resonance or mass spectrometry, are emerging as powerful strategies used to measure fluxes in complex interconnected metabolic networks. In this chapter, we review these methods together with the computational resources for flux analysis. Current challenges and limitations in fluxomics applied to Metabolic Syndrome are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a more general definition of isotopologue and isotopomer we refer the reader to (IUPAC Compendium of Chemical Terminology—the Gold Book 2011)

References

  • Aboka FO, Heijnen JJ, Van Winden WA (2009) Dynamic 13C-tracer study of storage carbohydrate pools in aerobic glucose-limited saccharomyces cerevisiae confirms a rapid steady-state turnover and fast mobilization during a modest stepup in the glucose uptake rate. FEMS Yeast Res 9:191–201

    Article  PubMed  CAS  Google Scholar 

  • Amaral AI, Teixeira AP, Martens S, Bernal V, Sousa MF, Alves PM (2010) Metabolic alterations induced by ischemia in primary cultures of astrocytes: merging 13C NMR spectroscopy and metabolic flux analysis. J Neurochem 113:735–748

    Article  PubMed  CAS  Google Scholar 

  • Antoniewicz MR, Kelleher JK, Stephanopoulos G (2006) Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng 8:324–37

    Article  PubMed  CAS  Google Scholar 

  • Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68–86

    Article  PubMed  CAS  Google Scholar 

  • Baxter CJ, Liu JL, Fernie AR, Sweetlove LJ (2007) Determination of metabolic fluxes in a non-steady-state system. Phytochemistry 68:2313–2319

    Article  PubMed  Google Scholar 

  • Boren J, Lee WN, Bassilian S, Centelles JJ, Lim S, Ahmed S, Boros LG, Cascante M (2003) The stable isotope-based dynamic metabolic profile of butyrate-induced HT29 cell differentiation. J Biol Chem 278:28395–28402

    Article  PubMed  CAS  Google Scholar 

  • Bothwell JH, Griffin JL (2011) An introduction to biological nuclear magnetic resonance spectroscopy. Biol Rev Camb Philos Soc 86:493–510

    Article  PubMed  Google Scholar 

  • Bruggeman FJ, Snoep JL, Westerhoff HV (2008) Control, responses and modularity of cellular regulatory networks: a control analysis perspective. IET Syst Biol 2:397–410

    Article  PubMed  CAS  Google Scholar 

  • Burgess SC, He T, Yan Z, Lindner J, Sherry AD, Malloy CR, Browning JD, Magnuson MA (2007) Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab 5:313–320

    Article  PubMed  CAS  Google Scholar 

  • Cascante M, Boros LG, Comin-Anduix B, De Atauri P, Centelles JJ, Lee PW (2002) Metabolic control analysis in drug discovery and disease. Nat Biotechnol 20:243–249

    Article  PubMed  CAS  Google Scholar 

  • Cascante M, Marin S (2008) Metabolomics and fluxomics approaches. Essays Biochem 45:67–81

    Article  PubMed  CAS  Google Scholar 

  • Castro-Perez JM, Roddy TP, Shah V, Mclaren DG, Wang SP, Jensen K, Vreeken RJ, Hankemeier T, Johns DG, Previs SF, Hubbard BK (2011) Identifying static and kinetic lipid phenotypes by high resolution UPLC-MS: unraveling diet-induced changes in lipid homeostasis by coupling metabolomics and fluxomics. J Proteome Res 10:4281–4290

    Article  PubMed  CAS  Google Scholar 

  • Collins JM, Neville MJ, Pinnick KE, Hodson L, Ruyter B, Van Dijk TH, Reijngoud DJ, Fielding MD, Frayn KN (2011) De novo lipogenesis in the differentiating human adipocyte can provide all fatty acids necessary for maturation. J Lipid Res 52:1683–1692

    Article  PubMed  CAS  Google Scholar 

  • Curien G, Bastien O, Robert-Genthon M, Cornish-Bowden A, Cardenas ML, Dumas R (2009) Understanding the regulation of aspartate metabolism using a model based on measured kinetic parameters. Mol Syst Biol 5:271

    Article  PubMed  Google Scholar 

  • Curto R, Sorribas A, Cascante M (1995) Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: model definition and nomenclature. Math Biosci 130:25–50

    Article  PubMed  CAS  Google Scholar 

  • Choi J, Antoniewicz MR (2011) Tandem mass spectrometry: a novel approach for metabolic flux analysis. Metab Eng 13:225–233

    Article  PubMed  CAS  Google Scholar 

  • De Atauri P, Sorribas A, Cascante M (2000) Analysis and prediction of the effect of uncertain boundary values in modeling a metabolic pathway. Biotechnol Bioeng 68:18–30

    Article  PubMed  CAS  Google Scholar 

  • Deshpande R, Yang TH, Heinzle E (2009) Towards a metabolic and isotopic steady state in CHO batch cultures for reliable isotope-based metabolic profiling. Biotechnol J 4:247–263

    Article  PubMed  CAS  Google Scholar 

  • Dudley E, Yousef M, Wang Y, Griffiths WJ (2010) Targeted metabolomics and mass spectrometry. Adv Protein Chem Struct Biol 80:45–83

    Article  PubMed  CAS  Google Scholar 

  • Fan TW, Lane AN, Higashi RM, Farag MA, Gao H, Bousamra M, Miller DM (2009) Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Mol Cancer 8:41

    Article  PubMed  Google Scholar 

  • Feist AM, Palsson BO (2010) The biomass objective function. Curr Opin Microbiol 13:344–349

    Article  PubMed  CAS  Google Scholar 

  • Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, Balestrieri C, Alberghina L, Stephanopoulos G, Chiaradonna F (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 7:523

    Article  PubMed  Google Scholar 

  • Gu L, Zhang GF, Kombu RS, Allen F, Kutz G, Brewer WU, Roe CR, Brunengraber H (2010) Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. II. Effects on lipolysis, glucose production, and liver acyl-CoA profile. Am J Physiol Endocrinol Metab 298:E362–371

    Article  Google Scholar 

  • Gudmundsson S, Thiele I (2010) Computationally efficient flux variability analysis. BMC Bioinformatics 11:489

    Article  PubMed  Google Scholar 

  • Heinrich R, Schuster S (1996) The regulation of cellular systems. Chapman and Hall, New York

    Book  Google Scholar 

  • Henry O, Jolicoeur M, Kamen A (2011) Unraveling the metabolism of HEK-293 cells using lactate isotopomer analysis. Bioprocess Biosyst Eng 34:263–273

    Article  PubMed  CAS  Google Scholar 

  • Hiller K, Metallo CM, Kelleher JK, Stephanopoulos G (2010) Nontargeted elucidation of metabolic pathways using stable-isotope tracers and mass spectrometry. Anal Chem 82:6621–6628

    Article  PubMed  CAS  Google Scholar 

  • Jouhten P, Rintala E, Huuskonen A, Tamminen A, Toivari M, Wiebe M, Ruohonen L, Penttila M, Maaheimo H (2008) Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A. BMC Syst Biol 2:60

    Article  PubMed  Google Scholar 

  • Jouhten P, Pitkanen E, Pakula T, Saloheimo M, Penttila M, Maaheimo H (2009) 13C-metabolic flux ratio and novel carbon path analyses confirmed that Trichoderma reesei uses primarily the respirative pathway also on the preferred carbon source glucose. BMC Syst Biol 3:104

    Article  PubMed  Google Scholar 

  • Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  PubMed  CAS  Google Scholar 

  • Krömer J, Quek LE, Nielsen LK (2009) 13C-Fluxomics: a tool for measuring metabolic phenotypes. Australian Biochemist 40:17–20

    Google Scholar 

  • Kuchel PW (2010) Models of the human metabolic network: aiming to reconcile metabolomics and genomics. Genome Med 2:46

    Article  PubMed  Google Scholar 

  • Lane AN, Fan TW, Higashi RM, Tan J, Bousamra M, Miller DM (2009) Prospects for clinical cancer metabolomics using stable isotope tracers. Exp Mol Pathol 86:165–173

    Article  PubMed  CAS  Google Scholar 

  • Lane AN, Fan TW, Bousamra M II, Higashi RM, Yan J, Miller DM (2011) Stable isotope-resolved metabolomics (SIRM) in cancer research with clinical application to nonsmall cell lung cancer. Omics 15:173–182

    Article  PubMed  CAS  Google Scholar 

  • Li W, Bian F, Chaudhuri P, Mao X, Brunengraber H, Yu X (2011) Delineation of substrate selection and anaplerosis in tricarboxylic acid cycle of the heart by 13C NMR spectroscopy and mass spectrometry. NMR Biomed 24:176–187

    Article  PubMed  CAS  Google Scholar 

  • Llaneras F, Pico J (2008) Stoichiometric modelling of cell metabolism. J Biosci Bioeng 105:1–11

    Article  PubMed  CAS  Google Scholar 

  • Lorkowski S (2011) Chemistry meets nutrition: toward a system biological description of human metabolism. Pure Appl Chem 83:151–165

    Article  CAS  Google Scholar 

  • Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5:264–276

    Article  PubMed  CAS  Google Scholar 

  • Maher AD, Kuchel PW, Ortega F, De Atauri P, Centelles J, Cascante M (2003) Mathematical modelling of the urea cycle. A numerical investigation into substrate channelling. Eur J Biochem 270:3953–3961

    Article  PubMed  CAS  Google Scholar 

  • Marin S, Chiang K, Bassilian S, Lee WN, Boros LG, Fernandez-Novell JM, Centelles JJ, Medrano A, Rodriguez-Gil JE, Cascante M (2003) Metabolic strategy of boar spermatozoa revealed by a metabolomic characterization. FEBS Lett 554:342–346

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka Y, Shimizu K (2010) Current status of 13C-metabolic flux analysis and future perspectives. Process Biochemistry 45:1873–1881

    Article  CAS  Google Scholar 

  • Metallo CM, Walther JL, Stephanopoulos G (2009) Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J Biotechnol 144:167–174

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Sanchez R, Saavedra E, Rodriguez-Enriquez S, Olin-Sandoval V (2008) Metabolic control analysis: a tool for designing strategies to manipulate metabolic pathways. J Biomed Biotechnol 2008:597913

    Article  PubMed  Google Scholar 

  • Nikerel IE, Van Winden WA, Verheijen PJ, Heijnen JJ (2009) Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with linlog kinetics. Metab Eng 11:20–30

    Article  PubMed  CAS  Google Scholar 

  • Noh K, Wahl A, Wiechert W (2006) Computational tools for isotopically instationary 13C labeling experiments under metabolic steady state conditions. Metab Eng 8:554–577

    Article  PubMed  Google Scholar 

  • Oresic M (2009) Metabolomics, a novel tool for studies of nutrition, metabolism and lipid dysfunction. Nutr Metab Cardiovasc Dis 19:816–824

    Article  PubMed  CAS  Google Scholar 

  • Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    Article  PubMed  CAS  Google Scholar 

  • Paul Lee WN, Wahjudi PN, Xu J, Go VL (2010) Tracer-based metabolomics: concepts and practices. Clin Biochem 43:1269–1277

    Article  PubMed  Google Scholar 

  • Press W, Flannery B, Teukolsky S, Vetterling W (2002) Numerical recipes in C: the art of scientific computing. Cambridge University Press, New York

    Google Scholar 

  • Quek LE, Wittmann C, Nielsen LK, Kromer JO (2009) OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microb Cell Fact 8:25

    Article  PubMed  Google Scholar 

  • Raftos JE, Whillier S, Kuchel PW (2010) Glutathione synthesis and turnover in the human erythrocyte: alignment of a model based on detailed enzyme kinetics with experimental data. J Biol Chem 285:23557–23567

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Prados JC, De Atauri P, Maury J, Ortega F, Portais JC, Chassagnole C, Acerenza L, Lindley ND, Cascante M (2009) In silico strategy to rationally engineer metabolite production: a case study for threonine in Escherichia coli. Biotechnol Bioeng 103:609–620

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Prados JC, Traves PG, Cuenca J, Rico D, Aragones J, Martin-Sanz P, Cascante M, Bosca L (2010) Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 185:605–614

    Article  PubMed  CAS  Google Scholar 

  • Ruppin E, Papin JA, De Figueiredo LF, Schuster S (2010) Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks. Curr Opin Biotechnol 21:502–510

    Article  PubMed  CAS  Google Scholar 

  • Sauer U (2004) High-throughput phenomics: experimental methods for mapping fluxomes. Curr Opin Biotechnol 15:58–63

    Article  PubMed  CAS  Google Scholar 

  • Schuster S, Pfeiffer T, Fell DA (2008) Is maximization of molar yield in metabolic networks favoured by evolution? J Theor Biol 252:497–504

    Article  PubMed  CAS  Google Scholar 

  • Selivanov VA, Puigjaner J, Sillero A, Centelles JJ, Ramos-Montoya A, Lee PW, Cascante M (2004) An optimized algorithm for flux estimation from isotopomer distribution in glucose metabolites. Bioinformatics 20:3387–3397

    Article  PubMed  CAS  Google Scholar 

  • Selivanov VA, Meshalkina LE, Solovjeva ON, Kuchel PW, Ramos-Montoya A, Kochetov GA, Lee PW, Cascante M (2005) Rapid simulation and analysis of isotopomer distributions using constraints based on enzyme mechanisms: an example from HT29 cancer cells. Bioinformatics 21:3558–3564

    Article  PubMed  CAS  Google Scholar 

  • Selivanov VA, Marin S, Lee PW, Cascante M (2006) Software for dynamic analysis of tracer-based metabolomic data: estimation of metabolic fluxes and their statistical analysis. Bioinformatics 22:2806–2812

    Article  PubMed  CAS  Google Scholar 

  • Selivanov VA, Vizan P, Mollinedo F, Fan TW, Lee PW, Cascante M (2010) Edelfosine-induced metabolic changes in cancer cells that precede the overproduction of reactive oxygen species and apoptosis. BMC Syst Biol 4:135

    Article  PubMed  Google Scholar 

  • Srour O, Young JD, Eldar YC (2011) Fluxomers: a new approach for 13C metabolic flux analysis. BMC Syst Biol 5:129

    Article  PubMed  CAS  Google Scholar 

  • Stephanopoulos G, Aristidou A, Nielsen J (1998) Metabolic Engineering. Principles and Methodologies. San Diego Academic Press

    Google Scholar 

  • Teusink B, Passarge J, Reijenga CA, Esgalhado E, Van Der Weijden CC, Schepper M, Walsh MC, Bakker BM, Van Dam K, Westerhoff HV, Snoep JL (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267:5313–5529

    Article  PubMed  CAS  Google Scholar 

  • Vaitheesvaran B, Chueh FY, Xu J, Trujillo C, Saad MF, Lee WN, Mcguinness OP, Kurland IJ (2010a) Advantages of dynamic “closed loop” stable isotope flux phenotyping over static “open loop” clamps in detecting silent genetic and dietary phenotypes. Metabolomics 6:180–190

    Article  CAS  Google Scholar 

  • Vaitheesvaran B, Leroith D, Kurland IJ (2010b) MKR mice have increased dynamic glucose disposal despite metabolic inflexibility, and hepatic and peripheral insulin insensitivity. Diabetologia 53:2224–2232

    Article  CAS  Google Scholar 

  • Vizan P, Alcarraz-Vizan G, Diaz-Moralli S, Solovjeva ON, Frederiks WM, Cascante M (2009) Modulation of pentose phosphate pathway during cell cycle progression in human colon adenocarcinoma cell line HT29. Int J Cancer 124:2789–2796

    Article  PubMed  CAS  Google Scholar 

  • Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3:195–206

    Article  PubMed  CAS  Google Scholar 

  • Wiechert W, Mollney M, Petersen S, De Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3:265–283

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Xiao G, Trujillo C, Chang V, Blanco L, Joseph SB, Bassilian S, Saad MF, Tontonoz P, Lee WN, Kurland IJ (2002) Peroxisome proliferator-activated receptor alpha (PPARalpha) influences substrate utilization for hepatic glucose production. J Biol Chem 277:50237–50244

    Article  PubMed  CAS  Google Scholar 

  • Zamboni N, Fischer E, Sauer U (2005) FiatFlux—a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics 6:209

    Article  PubMed  Google Scholar 

  • Zamboni N, Sauer U (2005) Fluxome profiling in microbes. In: Vaidyanathan S, Harrigan GG, Goodacre R (eds) Metabolome analyses: strategies for systems biology. Springer, New York

    Google Scholar 

  • Zhang GF, Kombu RS, Kasumov T, Han Y, Sadhukhan S, Zhang J, Sayre LM, Ray D, Gibson KM, Anderson VA, Tochtrop GP, Brunengraber H (2009) Catabolism of 4-hydroxyacids and 4-hydroxynonenal via 4-hydroxy-4-phosphoacyl-CoAs. J Biol Chem 284:33521–33534

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission Seventh Framework Programme FP7 (Etherpaths KBBE-grant n°222639); the Spanish Government and the European Union FEDER funds (SAF2011-25726); ISCIII-RTICC & European Regional Development Fund (RD06/0020/0046); Generalitat de Catalunya (2009SGR1308 and ICREA Academia price to MC). AB was granted by CSIC (Programa JAE Predoc).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Cascante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cascante, M., Benito, A., Marín de Mas, I., Centelles, J., Miranda, A., Atauri, P. (2014). Fluxomics. In: Orešič, M., Vidal-Puig, A. (eds) A Systems Biology Approach to Study Metabolic Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-01008-3_12

Download citation

Publish with us

Policies and ethics