Skip to main content

Part of the book series: Experientia Supplementum ((EXS,volume 106))

Abstract

Neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), are caused by a combination of events that impair normal neuronal function. Although they are considered different disorders, there are overlapping features among them from the clinical, pathological, and genetic points of view. Synaptic dysfunction and loss, neurite retraction, and the appearance of other abnormalities such as axonal transport defects normally precede the neuronal loss that is a relatively late event. The diagnosis of many neurodegenerative diseases is mainly based on patient’s cognitive function analysis, and the development of diagnostic methods is complicated by the brain’s capacity to compensate for neuronal loss over a long period of time. This results in the late clinical manifestation of symptoms, a time when successful treatment is no longer feasible. Thus, a noninvasive diagnostic method based on early events detection is particularly important. In the last years, some biomarkers expressed in human body fluids have been proposed. microRNAs (miRNAs), with their high stability, tissue- or cell type-specific expression, lower cost, and shorter time in the assay development, could constitute a good tool to obtain an early disease diagnosis for a wide number of human pathologies, including neurodegenerative diseases. The possibilities and challenges of using these small RNA molecules as a signature for neurodegenerative disorders is a highly promising approach for developing minimally invasive screening tests and to identify new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandrov PN, Dua P, Hill JM et al (2012) microRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int J Biochem Mol Biol 3:365–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong RA, Lantos PL, Cairns NJ (2005) Overlap between neurodegenerative disorders. Neuropathology 25:111–124

    Article  PubMed  Google Scholar 

  • Bateman RJ, Xiong C, Benzinger TLS et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367:795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bekris LM, Lutz F, Montine TJ et al (2013) MicroRNA in Alzheimer’s disease: an exploratory study in brain, cerebrospinal fluid and plasma. Biomarkers 18:455–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellingham SA, Coleman BM, Hill AF (2012) Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res 40:10937–10949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatnagar S, Chertkow H, Schipper HM et al (2014) Increased microRNA-34c abundance in Alzheimer’s disease circulating blood plasma. Front Mol Neurosci 7:2. doi:10.3389/fnmol.2014.00002

    Article  PubMed  PubMed Central  Google Scholar 

  • Botta-Orfila T, Morató X, Compta Y et al (2014) Identification of blood serum micro-RNAs associated with idiopathic and LRRK2 Parkinson’s disease. J Neurosci Res 92:1071–1077

    Article  CAS  PubMed  Google Scholar 

  • Brunden KR, Trojanowski JQ, Smith AB et al (2014) Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease. Bioorg Med Chem 22:5040–5049

    Article  CAS  PubMed  Google Scholar 

  • Burgos K, Malenica I, Metpally R et al (2014) Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS ONE 9, e94839

    Article  PubMed  PubMed Central  Google Scholar 

  • Butovsky O, Siddiqui S, Gabriely G et al (2012) Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest 122:3063–3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardo LF, Coto E, de Mena L et al (2013) Profile of microRNAs in the plasma of Parkinson’s disease patients and healthy controls. J Neurol 260:1420–1422

    Article  PubMed  Google Scholar 

  • Chevillet JR, Lee I, Briggs HA et al (2014) Issues and prospects of microRNA-based biomarkers in blood and other body fluids. Molecules 19:6080–6105

    Article  PubMed  Google Scholar 

  • Cogswell JP, Ward J, Taylor IA et al (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14:27–41

    Article  CAS  PubMed  Google Scholar 

  • Coppedè F (2012) Genetics and epigenetics of Parkinson’s disease. Sci World J 2012:489830. doi:10.1100/2012/489830

    Article  Google Scholar 

  • Craig-Schapiro R, Fagan AM, Holtzman DM (2009) Biomarkers of Alzheimer’s disease. Neurobiol Dis 35:128–140

    Article  CAS  PubMed  Google Scholar 

  • Davis TH, Cuellar TL, Koch SM et al (2008) Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 28:4322–4330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Felice B, Guida M, Guida M et al (2012) A miRNA signature in leukocytes from sporadic amyotrophic lateral sclerosis. Gene 508:35–40

    Article  PubMed  Google Scholar 

  • De Felice B, Annunziata A, Fiorentino G et al (2014) miR-338-3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients. Neurogenetics 15:243–253

    Article  PubMed  Google Scholar 

  • DeCarli C (2003) Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment. Lancet Neurol 2:15–21

    Article  PubMed  Google Scholar 

  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delay C, Hébert SS (2011) MicroRNAs and Alzheimer’s disease mouse models: current insights and future research avenues. Int J Alzheimers Dis 2011:894938

    PubMed  PubMed Central  Google Scholar 

  • Egorova P, Popugaeva E, Bezprozvanny I (2015) Disturbed calcium signaling in spinocerebellar ataxias and Alzheimer’s disease. Semin Cell Dev Biol 40:127–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freischmidt A, Müller K, Zondler L et al (2014) Serum microRNAs in patients with genetic amyotrophic lateral sclerosis and pre-manifest mutation carriers. Brain 137:2938–2950

    Article  PubMed  Google Scholar 

  • Galimberti D, Villa C, Fenoglio C et al (2014) Circulating miRNAs as potential biomarkers in Alzheimer’s disease. J Alzheimers Dis 42:1261–1267

    CAS  PubMed  Google Scholar 

  • Garza-Manero S, Arias C, Bermúdez-Rattoni F et al (2015) Identification of age- and disease-related alterations in circulating miRNAs in a mouse model of Alzheimer’s disease. Front Cell Neurosci 9:53. doi:10.3389/fncel.2015.00053

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaughwin PM, Ciesla M, Lahiri N et al (2011) Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington’s disease. Hum Mol Genet 20:2225–2237

    Article  CAS  PubMed  Google Scholar 

  • Geekiyanage H, Chan C (2011) MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid β, novel targets in sporadic Alzheimer’s disease. J Neurosci 31:14820–14830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geekiyanage H, Jicha GA, Nelson PT et al (2012) Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease. Exp Neurol 235:491–496

    Article  CAS  PubMed  Google Scholar 

  • Han G, Sun J, Wang J et al (2014) Genomics in neurological disorders. Genomics Proteomics Bioinformatics 12:156–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Hébert SS, Horré K, Nicolaï L et al (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA 105:6415–6420

    Article  PubMed  PubMed Central  Google Scholar 

  • Hébert SS, Sergeant N, Buée L (2012) MicroRNAs and the regulation of Tau metabolism. Int J Alzheimers Dis 2012:406561

    PubMed  PubMed Central  Google Scholar 

  • Hensley K, Harris-White ME (2015) Redox regulation of autophagy in healthy brain and neurodegeneration. Neurobiol Dis. doi:10.1016/j.nbd.2015.03.002 [Epub ahead of print]

    Google Scholar 

  • Hong Z, Shi M, Chung KA et al (2010) DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 133:713–726

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson JO, Mandrioli J, Benatar M et al (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68:857–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi Y, Okamoto T, Taniwaki M et al (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 8:221–228

    Article  CAS  PubMed  Google Scholar 

  • Kaye FJ, Shows TB (2000) Assignment of ubiquilin2 (UBQLN2) to human chromosome xp11. 23 → p11.1 by GeneBridge radiation hybrids. Cytogenet Cell Genet 89:116–117

    Article  CAS  PubMed  Google Scholar 

  • Keller A, Leidinger P, Bauer A et al (2011) Toward the blood-borne miRNome of human diseases. Nat Methods 8:841–843. doi:10.1038/nmeth.1682

    Article  CAS  PubMed  Google Scholar 

  • Khoo SK, Petillo D, Kang UJ et al (2012) Plasma-based circulating MicroRNA biomarkers for Parkinson’s disease. J Parkinsons Dis 2:321–331

    CAS  PubMed  Google Scholar 

  • Kiko T, Nakagawa K, Tsuduki T et al (2014) MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer’s disease. J Alzheimers Dis 39:253–259

    CAS  PubMed  Google Scholar 

  • Kumar P, Dezso Z, MacKenzie C et al (2013) Circulating miRNA biomarkers for Alzheimer’s disease. PLoS ONE 8, e69807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langbaum JB, Fleisher AS, Chen K et al (2013) Ushering in the study and treatment of preclinical Alzheimer disease. Nat Rev Neurol 9:371–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le WD, Rowe DB, Jankovic J et al (1999) Effects of cerebrospinal fluid from patients with Parkinson disease on dopaminergic cells. Arch Neurol 56:194–200

    Article  CAS  PubMed  Google Scholar 

  • Lehmann SM, Krüger C, Park B et al (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15:827–835

    Article  CAS  PubMed  Google Scholar 

  • Leidinger P, Backes C, Deutscher S et al (2013) A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol 14:R78

    Article  PubMed  PubMed Central  Google Scholar 

  • Long JM, Lahiri DK (2011) MicroRNA-101 downregulates Alzheimer’s amyloid-β precursor protein levels in human cell cultures and is differentially expressed. Biochem Biophys Res Commun 404:889–895

    Article  CAS  PubMed  Google Scholar 

  • Lukiw WJ, Alexandrov PN (2012) Regulation of complement factor H (CFH) by multiple miRNAs in Alzheimer’s disease (AD) brain. Mol Neurobiol 46:11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukiw WJ, Alexandrov PN, Zhao Y et al (2012) Spreading of Alzheimer’s disease inflammatory signaling through soluble micro-RNA. Neuroreport 23:621–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald M (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  • Margis R, Margis R, Rieder CRM (2011) Identification of blood microRNAs associated to Parkinsonĭs disease. J Biotechnol 152:96–101

    Article  CAS  PubMed  Google Scholar 

  • Martins M, Rosa A, Guedes LC et al (2011) Convergence of miRNA expression profiling, α-synuclein interacton and GWAS in Parkinson’s disease. PLoS ONE 6, e25443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mena NP, Urrutia PJ, Lourido F et al (2015) Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 21C:92–105

    Article  Google Scholar 

  • Michell AW, Lewis SJG, Foltynie T, Barker RA (2004) Biomarkers and Parkinson’s disease. Brain 127:1693–1705

    Article  CAS  PubMed  Google Scholar 

  • Miñones-Moyano E, Porta S, Escaramís G et al (2011) MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 20:3067–3078

    Article  PubMed  Google Scholar 

  • Mollenhauer B, Locascio JJ, Schulz-Schaeffer W et al (2011) α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol 10:230–240

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Jäkel L, Bruinsma IB et al (2015) MicroRNA-29a is a candidate biomarker for Alzheimer’s disease in cell-free cerebrospinal fluid. Mol Neurobiol. doi:10.1007/s12035-015-9156-8 [Epub ahead of print]

    Google Scholar 

  • Nixon RA, Yang DS (2012) Autophagy and neuronal cell death in neurological disorders. Cold Spring Harb Perspect Biol 4. doi:10.1101/cshperspect.a008839

  • Parkinson N, Ince PG, Smith MO et al (2006) ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67:1074–1077

    Article  CAS  PubMed  Google Scholar 

  • Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144

    Article  CAS  PubMed  Google Scholar 

  • Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  CAS  PubMed  Google Scholar 

  • Roshan R, Ghosh T, Gadgil M, Pillai B (2012) Regulation of BACE1 by miR-29a/b in a cellular model of Spinocerebellar Ataxia 17. RNA Biol 9:891–899

    Article  CAS  PubMed  Google Scholar 

  • Ryberg H, Bowser R (2008) Protein biomarkers for amyotrophic lateral sclerosis. Expert Rev Proteomics 5:249–262

    Article  CAS  PubMed  Google Scholar 

  • Sala Frigerio C, Lau P, Salta E et al (2013) Reduced expression of miR-27a-3p in CSF of patients with Alzheimer disease. Neurology 81:2103–2106

    Article  CAS  PubMed  Google Scholar 

  • Santa-Maria I, Alaniz ME, Renwick N et al (2015) Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau. J Clin Invest 125:681–686

    Article  PubMed  PubMed Central  Google Scholar 

  • Sapp PC, Hosler BA, McKenna-Yasek D et al (2003) Identification of two novel loci for dominantly inherited familial amyotrophic lateral sclerosis. Am J Hum Genet 73:397–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schapira AHV (2013) Recent developments in biomarkers in Parkinson disease. Curr Opin Neurol 26:395–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schipper HM, Maes OC, Chertkow HM et al (2007) MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul Syst Bio 1:263–274

    PubMed  PubMed Central  Google Scholar 

  • Sheinerman KS, Tsivinsky VG, Crawford F et al (2012) Plasma microRNA biomarkers for detection of mild cognitive impairment. Aging 4:590–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi M, Bradner J, Hancock AM et al (2011) Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann Neurol 69:570–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Huang F, Tang B et al (2014) MicroRNA profiling in the serums of SCA3/MJD patients. Int J Neurosci 124:97–101

    Article  CAS  PubMed  Google Scholar 

  • Soreq L, Salomonis N, Bronstein M et al (2013) Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes. Front Mol Neurosci 6:10. doi:10.3389/fnmol.2013.00010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Yu J-T, Liu Q-Y et al (2014a) Circulating miR-125b as a biomarker of Alzheimer’s disease. J Neurol Sci 336:52–56

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Yu J-T, Tan M-S et al (2014b) Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer’s disease. J Alzheimers Dis 40:1017–1027

    CAS  PubMed  Google Scholar 

  • Toivonen JM, Manzano R, Oliván S et al (2014) MicroRNA-206: a potential circulating biomarker candidate for amyotrophic lateral sclerosis. PLoS ONE 9, e89065

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner MR, Kiernan MC, Leigh PN et al (2009) Biomarkers in amyotrophic lateral sclerosis. Lancet Neurol 8:94–109

    Article  CAS  PubMed  Google Scholar 

  • Vallelunga A, Ragusa M, Di Mauro S et al (2014) Identification of circulating microRNAs for the differential diagnosis of Parkinson’s disease and Multiple System Atrophy. Front Cell Neurosci 8:156. doi:10.3389/fncel.2014.00156

    Article  PubMed  PubMed Central  Google Scholar 

  • Vidal RL, Matus S, Bargsted L et al (2014) Targeting autophagy in neurodegenerative diseases. Trends Pharmacol Sci 35:583–591

    Article  CAS  PubMed  Google Scholar 

  • Wang W-X, Rajeev BW, Stromberg AJ et al (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28:1213–1223

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Liu P, Zhu H et al (2009) miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res Bull 80:268–273

    Article  CAS  PubMed  Google Scholar 

  • Waragai M, Wei J, Fujita M et al (2006) Increased level of DJ-1 in the cerebrospinal fluids of sporadic Parkinson’s disease. Biochem Biophys Res Commun 345:967–972

    Article  CAS  PubMed  Google Scholar 

  • Xiong R, Wang Z, Zhao Z et al (2014) MicroRNA-494 reduces DJ-1 expression and exacerbates neurodegeneration. Neurobiol Aging 35:705–714

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela A. Denti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grasso, M., Piscopo, P., Crestini, A., Confaloni, A., Denti, M.A. (2015). Circulating microRNAs in Neurodegenerative Diseases. In: Igaz, P. (eds) Circulating microRNAs in Disease Diagnostics and their Potential Biological Relevance. Experientia Supplementum, vol 106. Springer, Basel. https://doi.org/10.1007/978-3-0348-0955-9_7

Download citation

Publish with us

Policies and ethics