Skip to main content
Log in

miR-338-3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive and seriously disabling adult-onset neurological disease. Ninety percent of ALS patients are sporadic cases (sALS) with no clear genetic linkage. Accumulating evidence indicates that various microRNAs (miRNAs), expressed in a spatially and temporally controlled manner in the brain, play a key role in neuronal development. In addition, microRNA dysregulation contributes to some mental disorders and neurodegeneration diseases. In our research, the expression of one selected miRNA, miR-338-3p, which previously we have found over-expressed in blood leukocytes, was studied in several different tissues from sALS patients. For the first time, we detected a specific microRNA disease-related upregulation, miR-338-3p, in blood leukocytes as well in cerebrospinal fluid, serum, and spinal cord from sALS patients. Besides, staining of in situ hybridization showed that the signals of miR-338-3p were localized in the grey matter of spinal cord tissues from sALS autopsied patients. We propose that miRNA profiles found in tissue samples from sALS patients can be relevant to understand sALS pathogenesis and lead to set up effective biomarkers for sALS early diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 15:R46–R64

    Article  Google Scholar 

  2. DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  5. Nelson PT, Wang WX, Rajeev BW (2008) MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol 18:130–138

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. St Laurent G 3rd, Wahlestedt C (2007) Noncoding RNAs: couplers of analog and digital information in nervous system function? Trends Neurosci 30:612–621

    Article  PubMed  CAS  Google Scholar 

  7. Kocerha J, Kauppinen S, Wahlestedt C (2009) microRNAs in CNS disorders. Neuromolecular Med 11:162–172

    Article  PubMed  CAS  Google Scholar 

  8. Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G et al (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28:1213–1223

    Article  PubMed  PubMed Central  Google Scholar 

  9. Weinberg MS, Wood MJA (2009) Short non-coding RNA biology and neurodegenerative disorders: novel disease targets and therapeutics. Hum Mol Genet 18:27–39

    Article  Google Scholar 

  10. Sethi P, Lukiw WJ (2009) Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex. Neurosci Lett 459:100–104

    Article  PubMed  CAS  Google Scholar 

  11. Freischmidt A, Müller K, Ludolph AC, Weishaupt JH (2013) Systemic dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis. Acta Neuropathol Commun 1:42–51

    Article  PubMed  PubMed Central  Google Scholar 

  12. Russell AP, Wada S, Vergani L, Hock MB, Lamon S, Léger B, Ushida T, Cartoni R, Wadley GD, Hespel P, Kralli A, Soraru G, Angelini C, Akimoto T (2012) Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol Dis 4:107–117

    Google Scholar 

  13. Bruneteau G, Simonet T, Bauché S, Mandjee N, Malfatti E, Girard E, Tanguy ML, Behin A, Khiami F, Sariali E, Hell-Remy C, Salachas F, Pradat PF, Fournier E, Lacomblez L, Koenig J, Romero NB, Fontaine B, Meininger V, Schaeffer L, Hantaï D (2013) Muscle histone deacetylase 4 upregulation in amyotrophic lateral sclerosis: potential role in reinnervation ability and disease progression. Brain 136:2359–2368

    Article  PubMed  Google Scholar 

  14. Borovecki F, Lovrecic L, Zhou J, Jeong H, Then F et al (2005) Genome-wide expression profiling of human blood reveals biomarkers for Huntington’s disease. Proc Natl Acad Sci U S A 102:11023–11028

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Maes OC, Xu S, Yu B, Chertkow HM, Wang E et al (2007) Transcriptional profiling of Alzheimer blood mononuclear cells by microarray. Neurobiol Aging 28:1795–1809

    Article  PubMed  CAS  Google Scholar 

  16. Nishimura Y, Martin CL, Vazquez-Lopez A, Spence SJ, Alvarez-Retuerto AI et al (2007) Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways. Hum Mol Genet 16:1682–1698

    Article  PubMed  CAS  Google Scholar 

  17. De Felice B, Guida M, Guida M, Coppola C, De Mieri G et al (2012) A miRNA signature in leukocytes from sporadic amyotrophic lateral sclerosis. Gene 508(1):35–40

    Article  PubMed  Google Scholar 

  18. Fleige S, Pfaffl MW (2006) RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27:126–139

    Article  PubMed  CAS  Google Scholar 

  19. Bissels U, Wild S, Tomiuk S, Holste A, Hafner M et al (2009) Absolute quantification of microRNAs by using a universal reference. RNA 15:2375–2384

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Chen X, Liang H, Guan D, Wang C, Hu X, Cui L, Chen S, Zhang C, Zhang J, Zen K, Zhang CY (2013) A combination of Let-7d, Let-7g and Let-7i serves as a stable reference for normalization of serum microRNAs. PLoS One 8(11):e79652. doi:10.1371/journal.pone.0079652

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Baraniskin A, Kuhnhenn J, Schlegel U, Chan A, Deckert M, Gold R, Maghnouj A, Zöllner H, Reinacher-Schick A, Schmiegel W, Hahn SA, Schroers R (2011) Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. Blood 117:3140–3146

    Article  PubMed  CAS  Google Scholar 

  22. Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N et al (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5:R68

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schaefer A, O’Carroll D, Tan CL, Hillman D, Sugimori M et al (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204:1553–1558

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Hebert SS, De Strooper B (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32:199–206

    Article  PubMed  CAS  Google Scholar 

  25. Li D, Chen P, Li XY, Zhang LY, Xiong W et al (2011) Grade-specific expression profiles of miRNAs/mRNAs and docking study in human grade I-III astrocytomas. Omics 15(10):673–682

    Article  PubMed  CAS  Google Scholar 

  26. Nan Y, Han L, Zhang A, Wang G, Jia Z et al (2010) MiRNA-451 plays a role as tumor suppressor in human glioma cells. Brain Res 1359:14–21

    Article  PubMed  CAS  Google Scholar 

  27. Te JL, Dozmorov IM, Guthridge JM, Nguyen KL, Cavett JW et al (2010) Identification of unique microRNA signature associated with lupus nephritis. PLoS One 5(5):e10344

    Article  PubMed  PubMed Central  Google Scholar 

  28. Santarelli DM, Beveridge NJ, Tooney PA, Cairns MJ (2011) Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biol Psychiatry 69:180–187

    Article  PubMed  CAS  Google Scholar 

  29. Malzkorn B, Wolter M, Liesenberg F, Grzendowski M, Stühler K et al (2010) Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol 20:539–550

    Article  PubMed  CAS  Google Scholar 

  30. Lillo P, Mioshi E, Burrell JR, Kiernan MC, Hodges JR et al (2012) Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLoS One 7(8):e43993

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Bede P, Bokde A, Elamin M, Byrne S, McLaughlin RL et al (2013) Grey matter correlates of clinical variables in amyotrophic lateral sclerosis (ALS): a neuroimaging study of ALS motor phenotype heterogeneity and cortical focality. J Neurol Neurosurg Psychiatry 84(7):766–773

    Article  PubMed  Google Scholar 

  32. Malessa S, Leigh PN, Bertel O, Sluga E, Hornykiewicz O (1991) Amyotrophic lateral sclerosis: glutamate dehydrogenase and transmitter amino acids in the spinal cord. J Neurol Neurosurg Psychiatry 54(11):984–988

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Tomiyama M, Kimura T, Maeda T, Tanaka H, Furusawa K et al (2001) Expression of metabotropic glutamate receptor mRNAs in the human spinal cord: implications for selective vulnerability of spinal motor neurons in amyotrophic lateral sclerosis. J Neurol Sci 189(1–2):65–69

    Article  PubMed  CAS  Google Scholar 

  34. Kos A, Olde Loohuis NF, Wieczorek ML, Glennon JC, Martens GJ, Kolk SM, Aschrafi A (2012) A potential regulatory role for intronic microRNA-338-3p for its host gene encoding apoptosis-associated tyrosine kinase. PLoS One 7(2):e31022. doi:10.1371/journal.pone.0031022

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Tomomura M, Fernandez-Gonzales A, Yano R, Yuzaki M (2001) Characterization of the apoptosis-associated tyrosine kinase (AATYK) expressed in the CNS. Oncogene 20:1022–1032

    Article  PubMed  CAS  Google Scholar 

  36. Ragusa M, Majorana A, Banelli B, Barbagallo D, Statello L et al (2010) MIR152, MIR200B, and MIR338, human positional and functional neuroblastoma candidates, are involved in neuroblast differentiation and apoptosis. J Mol Med (Berl) 88:1041–1053

    Article  CAS  Google Scholar 

  37. Zhao X, He X, Han X, Yu Y, Ye F et al (2010) MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 65:612–626

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Aschrafi A, Natera-Naranjo O, Gioio AE, Kaplan BB (2010) Regulation of axonal trafficking of cytochrome c oxidase IV mRNA. Mol Cell Neurosci 43:422–430, 39

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Natera-Naranjo O, Aschrafi A, Gioio AE, Kaplan BB (2010) Identification and quantitative analyses of microRNAs located in the distal axons of sympathetic neurons. RNA 16:1516–1529

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Chen X, Pan M, Han L, Lu H, Hao X, Dong Q (2013) miR-338-3p suppresses neuroblastoma proliferation, invasion and migration through targeting PREX2a. FEBS Lett 587:3729–3737

    Article  PubMed  CAS  Google Scholar 

  41. Dorval V, Nelson PT, Hébert SS (2013) Circulating microRNAs in Alzheimer’s disease: the search for novel biomarkers. Front Mol Neurosci 6:24

    PubMed  PubMed Central  Google Scholar 

  42. Soreq L, Salomonis N, Bronstein M, Greenberg DS, Israel Z et al (2013) Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes. Front Mol Neurosci 6:10

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Hebert SS, Wang WX, Zhu Q, Nelson PT (2013) A study of small RNAs from cerebral neocortex of pathology-verified Alzheimer’s disease, dementia with Lewy bodies, hippocampal sclerosis, frontotemporal lobar dementia, and non-demented human controls. J Alzheimers Dis 35:335–348

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dott. Giovanna Benvenuto at Zoological Station “Anton Dohrn”, Naples, for image acquisition and processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruna De Felice.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Felice, B., Annunziata, A., Fiorentino, G. et al. miR-338-3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients. Neurogenetics 15, 243–253 (2014). https://doi.org/10.1007/s10048-014-0420-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-014-0420-2

Keywords

Navigation