Skip to main content

Part of the book series: Experientia Supplementum ((EXS,volume 106))

Abstract

By studying literature data and having performed an in silico analysis, the circulating microRNA expression profiles of healthy individuals appear to show an abundance of microRNAs with predominant tumor suppressor activity. We hypothesize that circulating tumor suppressor microRNAs might constitute a sort of continuous tumor surveillance, whereby circulating microRNAs delivering gene expression modulating epigenetic information might halt cell transformation and tumorigenesis. This mechanism might complement the well-known cancer immune surveillance. A further hypothesis is also discussed, supposing that the tissue specific action of microRNAs might represent a putative defense mechanism against the potential tumor-promoting actions of secreted miRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez-Erviti L, Seow Y, Yin H et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345

    Article  CAS  PubMed  Google Scholar 

  • Aqeilan RI, Calin GA, Croce CM (2010) miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 17:215–220

    Article  CAS  PubMed  Google Scholar 

  • Baier SR, Nguyen C, Xie F et al (2014) MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr 144:1495–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bitarte N, Bandres E, Boni V et al (2011) MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells 29:1661–1671

    Article  CAS  PubMed  Google Scholar 

  • Boyerinas B, Park SM, Hau A et al (2010) The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer 17:F19–F36

    Article  CAS  PubMed  Google Scholar 

  • Camussi G, Deregibus MC, Bruno S et al (2011) Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res 1:98–110

    PubMed  Google Scholar 

  • Cao J, Cai J, Huang D et al (2013) miR-335 represents an invasion suppressor gene in ovarian cancer by targeting Bcl-w. Oncol Rep 30:701–706

    CAS  PubMed  Google Scholar 

  • Chen CZ (2005) MicroRNAs as oncogenes and tumor suppressors. New Engl J Med 353:1768–1771

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Wang J, Cui Q (2013) Could circulating miRNAs contribute to cancer therapy? Trends Mol Med 19:71–73

    Article  CAS  PubMed  Google Scholar 

  • Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    Article  CAS  PubMed  Google Scholar 

  • Etheridge A, Gomes CP, Pereira RW et al (2013) The complexity, function and applications of RNA in circulation. Front Genet 4:115. doi:10.3389/fgene.2013.00115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falcone G, Felsani A, D'Agnano I (2015) Signaling by exosomal microRNAs in cancer. J Exp Clin Cancer Res 34:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Formosa A, Markert EK, Lena AM et al (2014) MicroRNAs, miR-154, miR-299-5p, miR-376a, miR-376c, miR-377, miR-381, miR-487b, miR-485-3p, miR-495 and miR-654-3p, mapped to the 14q32.31 locus, regulate proliferation, apoptosis, migration and invasion in metastatic prostate cancer cells. Oncogene 33:5173–5182

    Article  CAS  PubMed  Google Scholar 

  • Gits CM, van Kuijk PF, Jonkers MB et al (2013) MicroRNA expression profiles distinguish liposarcoma subtypes and implicate miR-145 and miR-451 as tumor suppressors. Int J Cancer 135:348–361

    Article  Google Scholar 

  • Glasgow SM, Laug D, Brawley VS et al (2013) The miR-223/nuclear factor I-A axis regulates glial precursor proliferation and tumorigenesis in the CNS. J Neurosci 33:13560–13568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godlewski J, Bronisz A, Nowicki MO et al (2010) microRNA-451: a conditional switch controlling glioma cell proliferation and migration. Cell Cycle 9:2742–2748

    Article  CAS  PubMed  Google Scholar 

  • Haneklaus M, Gerlic M, O'Neill LA et al (2013) miR-223: infection, inflammation and cancer. J Intern Med 274:215–226

    Article  CAS  PubMed  Google Scholar 

  • Hong L, Han Y, Zhang Y et al (2013) MicroRNA-21: a therapeutic target for reversing drug resistance in cancer. Expert Opin Ther Targets 17:1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Hunter MP, Ismail N, Zhang X et al (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE 3, e3694

    Article  PubMed  PubMed Central  Google Scholar 

  • Igaz I, Igaz P (2014) Tumor surveillance by circulating microRNAs: a hypothesis. Cell Mol Life Sci 71:4081–4087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igaz I, Igaz P (2015) Why is microRNA action tissue specific? A putative defense mechanism against growth disorders, tumor development or progression mediated by circulating microRNA? Med Hypotheses 85:530–533

    Google Scholar 

  • Katsuda T, Kosaka N, Ochiya T (2014) The roles of extracellular vesicles in cancer biology: toward the development of novel cancer biomarkers. Proteomics 14:412–425

    Article  CAS  PubMed  Google Scholar 

  • Li H, Xie S, Liu M et al (2014) The clinical significance of downregulation of mir-124-3p, mir-146a-5p, mir-155-5p and mir-335-5p in gastric cancer tumorigenesis. Int J Oncol 45:197–208

    CAS  PubMed  Google Scholar 

  • Liu D, Liu C, Wang X et al (2014) MicroRNA-451 suppresses tumor cell growth by down-regulating IL6R gene expression. Cancer Epidemiol 38:85–92

    Article  CAS  PubMed  Google Scholar 

  • Melo SA, Sugimoto H, O'Connell JT et al (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26:707–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namlos HM, Meza-Zepeda LA, Baroy T et al (2012) Modulation of the osteosarcoma expression phenotype by microRNAs. PLoS ONE 7, e48086

    Article  PubMed  PubMed Central  Google Scholar 

  • Nian W, Ao X, Wu Y et al (2013) miR-223 functions as a potent tumor suppressor of the Lewis lung carcinoma cell line by targeting insulin-like growth factor-1 receptor and cyclin-dependent kinase 2. Oncol Lett 6(2):359–366

    PubMed  PubMed Central  Google Scholar 

  • Ohshima K, Inoue K, Fujiwara A et al (2010) Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS ONE 5, e13247

    Article  PubMed  PubMed Central  Google Scholar 

  • Osada H, Takahashi T (2011) let-7 and miR-17-92: small-sized major players in lung cancer development. Cancer Sci 102:9–17

    Article  CAS  PubMed  Google Scholar 

  • Palanichamy JK, Rao DS (2014) miRNA dysregulation in cancer: towards a mechanistic understanding. Front Genet 5:54. doi:10.3389/fgene.2014.00054

    Article  PubMed  PubMed Central  Google Scholar 

  • Rayner KJ, Hennessy EJ (2013) Extracellular communication via microRNA: lipid particles have a new message. J Lipid Res 54:1174–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redis RS, Calin S, Yang Y et al (2012) Cell-to-cell miRNA transfer: from body homeostasis to therapy. Pharmacol Ther 136:169–174

    Article  CAS  PubMed  Google Scholar 

  • Reid G, Kirschner MB, van Zandwijk N (2011) Circulating microRNAs: association with disease and potential use as biomarkers. Crit Rev Oncol Hematol 80:193–208

    Article  PubMed  Google Scholar 

  • Snow JW, Hale AE, Isaacs SK et al (2013) Ineffective delivery of diet-derived microRNAs to recipient animal organisms. RNA Biol 10:1107–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Zhang Z, Liu Z et al (2014) MicroRNA-335 inhibits invasion and metastasis of colorectal cancer by targeting ZEB2. Med Oncol 31:982

    Article  PubMed  Google Scholar 

  • Szabo DR, Luconi M, Szabo PM et al (2014) Analysis of circulating microRNAs in adrenocortical tumors. Lab Invest 94:331–339

    Article  CAS  PubMed  Google Scholar 

  • Tahiri A, Leivonen SK, Luders T et al (2014) Deregulation of cancer-related miRNAs is a common event in both benign and malignant human breast tumors. Carcinogenesis 35:76–85

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yokota S, Tatsumi N et al (2013) Cigarette smoking substantially alters plasma microRNA profiles in healthy subjects. Toxicol Appl Pharmacol 272:154–160

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Oikawa K, Takanashi M et al (2009) Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS ONE 4, e5532

    Article  PubMed  PubMed Central  Google Scholar 

  • Turchinovich A, Burwinkel B (2012) Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNA Biol 9:1066–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turchinovich A, Samatov TR, Tonevitsky AG et al (2013) Circulating miRNAs: cell-cell communication function? Front Genet 4:119. doi:10.3389/fgene.2013.00119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vickers KC, Palmisano BT, Shoucri BM et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner J, Riwanto M, Besler C et al (2013) Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol 33:1392–1400

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhao W, Fu Q (2013) miR-335 suppresses migration and invasion by targeting ROCK1 in osteosarcoma cells. Mol Cell Biochem 384:105–111

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Tian X, Han R et al (2014) Downregulation of miR-486-5p contributes to tumor progression and metastasis by targeting protumorigenic ARHGAP5 in lung cancer. Oncogene 33:1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Weber JA, Baxter DH, Zhang S et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams Z, Ben-Dov IZ, Elias R et al (2013) Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc Natl Acad Sci USA 110:4255–4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witwer KW, Hirschi KD (2014) Transfer and functional consequences of dietary microRNAs in vertebrates: concepts in search of corroboration: negative results challenge the hypothesis that dietary xenomiRs cross the gut and regulate genes in ingesting vertebrates, but important questions persist. BioEssays 36:394–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Mei Q, Shi L et al (2013) Tumor-suppressing effects of miR451 in human osteosarcoma. Cell Biochem Biophys 69:163–168

    Article  Google Scholar 

  • Zhang L, Hou D, Chen X et al (2012) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22:107–126

    Article  CAS  PubMed  Google Scholar 

  • Zhao LY, Yao Y, Han J et al (2014) miR-638 suppresses cell proliferation in gastric cancer by targeting Sp2. Dig Dis Sci 59:1743–1753

    Article  CAS  PubMed  Google Scholar 

  • Zhu DX, Zhu W, Fang C et al (2012) miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis 33:1294–1301

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Igaz M.D. M.Sc. Ph.D. D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Igaz, I., Igaz, P. (2015). Are Circulating microRNAs Involved in Tumor Surveillance?. In: Igaz, P. (eds) Circulating microRNAs in Disease Diagnostics and their Potential Biological Relevance. Experientia Supplementum, vol 106. Springer, Basel. https://doi.org/10.1007/978-3-0348-0955-9_13

Download citation

Publish with us

Policies and ethics