Skip to main content

Discrete Schrödinger Operators with Random Alloy-type Potential

  • Conference paper
  • First Online:
Spectral Analysis of Quantum Hamiltonians

Abstract

We review recent results on localization for discrete alloy-type models based on the multiscale analysis and the fractional moment method, respectively. Th e discrete alloy-type model is a family of Schrödinger operators \( H_\omega = - \Delta + V_\omega\) on \( l^{^2 } (\mathbb{Z}^d )\) where Δ is the discrete Laplacian and \(V_\omega\) the multiplication by the function \(V_\omega (x) = \sum _{k \in\mathbb{Z}^d } \omega _k u(x - k) \cdot\)Here \(\omega _k,k \in \mathbb{Z}^d \) are i.i.d. random variables and \( u \in l^1 (\mathbb{Z}^d ;\mathbb{R}) \) is a so-called single-site potential. Since u may change sign, certain properties of \(H\omega\) depend in a non-monotone way on the random parameters \( \omega _k\). This requires new methods at certain stages of the localization proof.

Mathematics Subject Classification (2000). 82B44, 60H25, 35J10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Aizenman, A. Elgart, S. Naboko, J.H. Schenker, and G. Stolz, Moment analysis for localization in random Schrödinger operators, Invent. Math. 163 (2006), no. 2, 343-413.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Aizenman, Localization at weak disorder: some elementary bounds, Rev. Math. Phys. 6 (1994), no. 5a, 1163-1182.

    Google Scholar 

  3. M. Aizenman and S. Molchanov, Localization at large disorder and at extreme energies: An elementary derivation, Commun. Math. Phys. 157 (1993), no. 2, 245-278.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Aizenman, J.H. Schenker, R.M. Friedrich, and D. Hundertmark, Finite- volume fractional-moment criteria for Anderson localization, Commun. Math. Phys. 224 (2001), no. 1, 219-253.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Bourgain, M. Goldstein, and W. Schlag, Anderson localization for Schrödinger operators on Z2 with quasi-periodic potential, Acta Math. 188 (2002), no. 1, 41-86.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Bourgain and C.E. Kenig, On localization in the continuous Anderson- Bernoulli model in higher dimension, Invent. Math. 161 (2005), no. 2, 389426.

    Google Scholar 

  7. J. Baker, M. Loss, and G. Stolz, Minimizing the ground state energy of an electron in a randomly deformed lattice, Commun. Math. Phys. 283 (2008), no. 2, 397-415.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Borisov and I. Veselic, Low lying spectrum of weak-disorder quantum waveguides, J. Stat. Phys. 124 (2011), no. 1, 58-77.

    Article  MathSciNet  Google Scholar 

  9. J. Bourgain, Recent progress in quasi-periodic lattice Schrödinger operators and Hamiltonian partial differential equations, Uspekhi Mat. Nauk 59 (2004), no. 2(356), 37-52.

    Google Scholar 

  10. J. Bourgain, Anderson localization for quasi-periodic lattice Schrödinger operators on Z d , d arbitrary, Geom. Funct. Anal. 17 (2007), no. 3, 682-706.

    Google Scholar 

  11. J. Bourgain, An approach to Wegner’s estimate using subharmonicity, J. Stat. Phys 134 (2009), no. 5-6, 969-978.

    Google Scholar 

  12. R. Carmona, A. Klein, and F. Martinelli, Anderson localization for Bernoulli and other singular potentials, Commun. Math. Phys. 108 (1987), no. 1, 41-66.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. von Dreifus and A. Klein, A new proof of localization in the Anderson tight binding model, Commun. Math. Phys. 124 (1989), no. 2, 285-299.

    Article  MATH  Google Scholar 

  14. H. von Dreifus and A. Klein, Localization for random. Schrödinger operators with correlated potentials, Commun. Math. Phys. 140 (1991), no. 1, 133-147.

    Google Scholar 

  15. R. del Rio, S. Jitomirskaya, Y. Last, and B. Simon, Operators with singularcontinuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization, J. Anal. Math. 69 (1996), no. 1, 153-200.

    Google Scholar 

  16. R.L. Dobrushin and S. Shlosman, Completely analytical interactions: Constructive description, J. Stat. Phys. 46 (1987), no. 5-6, 983-1014.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Erdős and D. Hasler, Anderson localization at band edges for ra,nd,om, magnetic fields, to appear in J. Stat. Phys., arXiv:1103.3744v1 [math-ph].

    Google Scholar 

  18. L. Erdős and D. Hasler, Anderson localization for random, m.agnetic Laplacian on Z2, to appear in Ann. Henri Poincaré, arXiv:1101.2139v1 [math-ph].

    Google Scholar 

  19. L. Erdős and D. Hasler, Wegner estimate and Anderson localization for random, magnetic fields, to appear in Commun. Math. Phys., arXiv:1012.5185v1 [math-ph].

    Google Scholar 

  20. A. Elgart, M. Tautenhahn, and I. Veselić, Localization via fractional moments for models on Z with single-site potentials of finite support, J. Phys. A: Math. Theor. 43 (2010), no. 47, 474021.

    Google Scholar 

  21. A. Elgart, M. Tautenhahn, Anderson localization for a class of m.odels with, a sign-indefinite single-site potential via fractional moment method, Ann. Henri Poincaré 12 (2011), no. 8, 1571-1599.

    Google Scholar 

  22. J. Fröhlich and T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Commun. Math. Phys. 88 (1983), no. 2, 151-184.

    Article  MathSciNet  Google Scholar 

  23. F. Germinet and A. Klein, A characterization of the Anderson metal- insulator transport transition, Duke Math. J. 124 (2004), no. 2, 309-350.

    Article  MathSciNet  MATH  Google Scholar 

  24. G.M. Graf, Anderson localization and the space-time characteristic of continuum states, J. Stat. Phys. 75 (1994), no. 1-2, 337-346.

    Article  MathSciNet  MATH  Google Scholar 

  25. P.D. Hislop and F. Klopp, The integrated density of states for some random, operators with nonsign definite potentials, J. Funct. Anal. 195 (2002), no. 1, 12-47.

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Hupfer, H. Leschke, P. Müller, and S. Warzel, The absolute continuity of the integrated density of states for magnetic Schrödinger operators with certain unbounded random potentials, Commun. Math. Phys. 221 (2001), no. 2, 229-254.

    Article  MathSciNet  MATH  Google Scholar 

  27. W. Kirsch, Random Schrödinger operators, Schrödinger Operators (Berlin) (H. Holden and A. Jensen, eds.), Lecture Notes in Physics, 345, Springer, 1989.

    Google Scholar 

  28. W. Kirsch, An invitation to random Schrödinger operators, Random Schrödinger operators, Panor. Synthèses, vol. 25, Soc. Math. France, 2008, with an appendix by Frédéric Klopp, pp. 1-119.

    Google Scholar 

  29. [KLNS] F. Klopp, M. Loss, S. Nakamura, and G. Stolz, Localization for the ra,nd,om, displacement model, arXiv:1007.2483v2 [math-ph].

    Google Scholar 

  30. F. Klopp, Localization for semiclassical continuous random Schrödinger operators II: The random displacement model, Helv. Phys. Acta 66 (1993), no. 7-8, 810-841.

    MathSciNet  MATH  Google Scholar 

  31. F. Klopp, Localization for some continuous random Schrödinger operators, Commun. Math. Phys. 167 (1995), no. 3, 553-569.

    Article  MathSciNet  MATH  Google Scholar 

  32. F. Klopp, Weak disorder localization and Lifshitz tails: continuous Hamilto- nians, Ann. Henri Poincaré 3 (2002), no. 4, 711-737.

    Article  MathSciNet  MATH  Google Scholar 

  33. W. Kirsch and F. Martinelli, On the spectrum of Schrödinger operators with a random potential, Commun. Math. Phys. 85 (1982), no. 3, 329-350.

    Article  MathSciNet  MATH  Google Scholar 

  34. W. Kirsch and B. Metzger, The integrated density of states for random Schrödinger operators, Spectral Theory and Mathematical Physics, Proceedings of Symposia in Pure Mathematics, vol. 76, AMS, 2007, pp. 649-698.

    Google Scholar 

  35. F. Klopp and S. Nakamura, Spectral extrema and Lifshitz tails for non- monotonous alloy type models, Commun. Math. Phys. 287 (2009), no. 3, 1133-1143.

    Article  MathSciNet  MATH  Google Scholar 

  36. F. Klopp, S. Nakamura, F. Nakano, and Y. Nomura, Anderson localization for 2D discrete Schrödinger operators with random magnetic fields, Ann. Henri Poincare 4 (2003), no. 4, 795-811.

    Article  MathSciNet  MATH  Google Scholar 

  37. H. Krüger, Localization for random operators with non-monotone potentials with exponentially decaying correlations, Ann. Henri Poincaré 13 (2012), no. 3, 543-598.

    Article  MathSciNet  Google Scholar 

  38. W. Kirsch, P. Stollmann, and G. Stolz, Anderson localization for random, Schrödinger operators with long range interactions, Commun. Math. Phys. 195 (1998), no. 3, 495-507.

    Article  MathSciNet  MATH  Google Scholar 

  39. W. Kirsch, P. Stollmann, and G. Stolz, Localization for random perturbations of periodic Schrödinger operators, Random Oper. Stochastic Equations 6 (1998), no. 3, 241-268.

    Article  MathSciNet  MATH  Google Scholar 

  40. V. Kostrykin and I. Veselić, On the Lipschitz continuity of the integrated density of states for sign-indefinite potentials, Math. Z. 252 (2006), no. 2, 367-392.

    Article  MathSciNet  MATH  Google Scholar 

  41. B.Ya. Levin, Lectures on entire functions, Translations of Mathematical Monographs, no. 150, American Mathematical Society, 1996.

    Google Scholar 

  42. D. Lenz, N. Peyerimhoff, O. Post, and I. Veselić, Continuity properties of the integrated density of states on manifolds, Jpn. J. Math. 3 (2008), no. 1, 121-161.

    Article  MathSciNet  MATH  Google Scholar 

  43. D. Lenz, N. Peyerimhoff, O. Post, and I. Veselić, Continuity of the integrated density of states on random length metric graphs, Math. Phys. Anal. Geom. 12 (2009), no. 3, 219-254.

    Google Scholar 

  44. D. Lenz, N. Peyerimhoff, and I. Veselić Integrated density of states for random metrics on manifolds, Proc. London Math. Soc. (3) 88 (2004), no. 3, 733-752.

    Google Scholar 

  45. Nazarov, M. Sodin, and A. Volberg, Local dimension-free estimates for volumes of sublevel sets of analytic functions, Isr. J. Math. 133 (2003), no. 1, 269-283.

    Google Scholar 

  46. N. Peyerimhoff, M. Tautenhahn, and I. Veselić, Wegner estimate for alloy- type models with sign-changing and exponentially decaying single-site potentials, TU Chemnitz Preprint 9, June 2011, ISSN 1614-8835.

    Google Scholar 

  47. Stolz, Non-m,on,otonic random Schrödinger operators: the Anderson model, J. Math. Anal. Appl. 248 (2000), no. 1, 173-183.

    Article  MathSciNet  MATH  Google Scholar 

  48. P. Stollmann, Caught by disorder: Bound states in random media, Progress in Mathematical Physics, vol. 20, Birkhauser, 2001.

    Google Scholar 

  49. G. Stolz, An introduction to the mathematics of Anderson localization, Lecture notes of the Arizona School of Analysis with Applications, 2010, to appear in Contemp. Math., arXiv:1104.2317v1 [math-ph].

    Google Scholar 

  50. B. Simon and T. Wolff, Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians, Commun. Pur. Appl. Math. 39 (1986), no. 1, 75-90.

    Article  MathSciNet  MATH  Google Scholar 

  51. M. Tautenhahn and I. Veselić, Spectral properties of discrete alloy-type models, Proceedings of the XVIth International Congress on Mathematical Physics, Prague, 2009, World Scientific, 2010, pp. 551-555.”

    Google Scholar 

  52. N. Ueki, On spectra of random Schrödinger operators with magnetic fields, Osaka J. Math. 31 (1994), no. 1, 177-187.

    MathSciNet  MATH  Google Scholar 

  53. N. Ueki, Simple examples of Lifschitz tails in Gaussian random magnetic fields, Ann. Henri Poincaré 1 (2000), no. 3, 473-498.

    Google Scholar 

  54. N. Ueki, Wegner estimates and localization for Gaussian random potentials, Publ. Res. Inst. Math. Sci. 40 (2004), no. 1, 29-90.

    Google Scholar 

  55. N. Ueki, Wegner estimate and localization for random magnetic fields, Osaka J. Math. 45 (2008), no. 3, 565-608.

    Google Scholar 

  56. I. Veselić, Wegner estimate and the density of states of some indefinite alloy type Schrödinger operators, Lett. Math. Phys. 59 (2002), no. 3, 199-214.

    Article  MathSciNet  MATH  Google Scholar 

  57. I. Veselić, Existence and regularity properties of the integrated density of states of random Schrödinger Operators, Lecture Notes in Mathematics, vol. Vol. 1917, Springer-Verlag, 2007.

    Google Scholar 

  58. I. Veselić, Wegner estimate for discrete alloy-type models, Ann. Henri Poincaré 11 (2010), no. 5, 991-1005.

    Google Scholar 

  59. I. Veselić, Wegner estimates for sign-changing single site potentials, Math. Phys. Anal. Geom. 13 (2010), no. 4, 299-313.

    Google Scholar 

  60. I. Veselić, Lipschitz-continuity of the integrated density of states for Gaussian random potentials, Lett. Math. Phys. 97 (2011), no. 1, 25-27.

    Google Scholar 

  61. F. Wegner, Bounds on the DOS in disordered systems, Z. Phys. B 44 (1981), no. 1-2, 9-15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Elgart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this paper

Cite this paper

Elgart, A., Krüger, H., Tautenhahn, M., Veselić, I. (2012). Discrete Schrödinger Operators with Random Alloy-type Potential. In: Benguria, R., Friedman, E., Mantoiu, M. (eds) Spectral Analysis of Quantum Hamiltonians. Operator Theory: Advances and Applications, vol 224. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0414-1_6

Download citation

Publish with us

Policies and ethics