Skip to main content

Cork Agglomerates in Acoustic Insulation

  • Chapter
  • First Online:
Cork-Based Materials in Engineering

Part of the book series: Green Energy and Technology ((GREEN))

  • 54 Accesses

Abstract

This chapter explains the acoustic insulation properties of cork agglomerates as a sustainable and efficient material. Sound control and acoustic insulation are vital considerations in various industries, seeking solutions to reduce noise pollution and create quieter environments. Cork agglomerates, derived from the renewable bark of the cork oak tree, showcase exceptional sound absorption and transmission loss capabilities owing to their unique cellular structure. The chapter explores the composition and manufacturing process of cork agglomerates, unveiling the factors influencing their acoustic insulation performance. Its applications span across diverse sectors, including construction, automotive, music, and industrial settings. Cork agglomerates excel in creating peaceful living spaces, enhancing sound quality in studios, reducing engine noise in vehicles, and controlling noise pollution in industrial facilities. Moreover, the chapter highlights the environmental benefits of cork agglomerates, presenting them as an eco-friendly choice for sustainable development. As renewable resources, cork oak trees contribute to carbon sequestration and a lower carbon footprint. Cork agglomerates’ low embodied energy and recyclability align with green building practices, making them valuable contributors to sustainable construction. The chapter also demonstrates the sound insulation performance of cork agglomerates by comparing them to other engineering materials such as AA6061, extruded polystyrene (XPS), and polyurethane (PU). According to the results, cork agglomerates are highly efficient materials in acoustic insulation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang Z (2016) Mechanics of human voice production and control. J Acoust Soc Am 140(4):2614–2635

    Article  Google Scholar 

  2. Zarastvand MR, Ghassabi M, Talebitooti R (2021) Acoustic insulation characteristics of shell structures: a review. Arch Comput Methods Eng 28(2):505–523

    Article  MathSciNet  Google Scholar 

  3. António JMP, Tadeu A, Godinho L (2003) Analytical evaluation of the acoustic insulation provided by double infinite walls. J Sound Vib 263(1):113–129

    Article  Google Scholar 

  4. Pérez G, Coma J, Barreneche C, De Gracia A, Urrestarazu M, Burés S et al (2016) Acoustic insulation capacity of Vertical Greenery Systems for buildings. Appl Acoust 110:218–226

    Article  Google Scholar 

  5. Gil L (2015) New cork-based materials and applications. Materials 8(2):625–637

    Article  MathSciNet  Google Scholar 

  6. Abenojar J, Barbosa AQ, Ballesteros Y, Del Real JC, Da Silva LFM, Martínez MA (2014) Effect of surface treatments on natural cork: surface energy, adhesion, and acoustic insulation. Wood Sci Technol 48(1):207–224

    Article  Google Scholar 

  7. Pedroso M, De Brito J, Silvestre JD (2017) Characterization of eco-efficient acoustic insulation materials (traditional and innovative). Constr Build Mater 140:221–228

    Article  Google Scholar 

  8. Gürgen S, Fernandes FAO, De Sousa RJA, Kuşhan MC (2021) Development of eco-friendly shock-absorbing cork composites enhanced by a non-Newtonian fluid. Appl Compos Mater 28(1):165–179

    Article  Google Scholar 

  9. Pereira H (2007) Cork: biology, production and uses, 1st edn. Elsevier, Amsterdam/London. 336 p

    Google Scholar 

  10. Knapic S, Oliveira V, Machado JS, Pereira H (2016) Cork as a building material: a review. Eur J Wood Wood Prod 74(6):775–791

    Article  Google Scholar 

  11. Gil L (2015) Cork. In: Gonçalves MC, Margarido F (eds) Materials for construction and civil engineering [Internet]. Springer, Cham, pp 585–627 [cited 2023 Aug 7]. Available from: https://link.springer.com/10.1007/978-3-319-08236-3_13

  12. Lakreb N, Şen U, Toussaint E, Amziane S, Djakab E, Pereira H (2023) Physical properties and thermal conductivity of cork-based sandwich panels for building insulation. Constr Build Mater 368:130420

    Article  Google Scholar 

  13. D’Alessandro F, Baldinelli G, Bianchi F, Sambuco S, Rufini A (2018) Experimental assessment of the water content influence on thermo-acoustic performance of building insulation materials. Constr Build Mater 158:264–274

    Article  Google Scholar 

  14. Santos PT, Pinto S, Marques PAAP, Pereira AB, Alves De Sousa RJ (2017) Agglomerated cork: a way to tailor its mechanical properties. Compos Struct 178:277–287

    Article  Google Scholar 

  15. Cozzarini L, Marsich L, Ferluga A (2023) Innovative thermal and acoustic insulation foams from recycled fiberglass waste. Adv Mater Technol 8(11):2201953

    Article  Google Scholar 

  16. Van Loo JM, Robbins CA, Swenson L, Kelman BJ (2004) Growth of mold on fiberglass insulation building materials—a review of the literature. J Occup Environ Hyg 1(6):349–354

    Article  Google Scholar 

  17. Diamant RME (1986) Thermal and acoustic insulation. Butterworths, London/Boston. 368 p

    Google Scholar 

  18. Verdejo R, Stämpfli R, Alvarez-Lainez M, Mourad S, Rodriguez-Perez MA, Brühwiler PA et al (2009) Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes. Compos Sci Technol 69(10):1564–1569

    Article  Google Scholar 

  19. Wareing RR, Davy JL, Pearse JR (2015) Predicting the sound insulation of plywood panels when treated with decoupled mass loaded barriers. Appl Acoust 91:64–72

    Article  Google Scholar 

  20. Sheikhi MR, Gürgen S, Altuntas O, Sofuoğlu MA (2023) Anti-impact and vibration-damping design of cork-based sandwich structures for low-speed aerial vehicles. Arch Civ Mech Eng 23(2):71

    Article  Google Scholar 

  21. Sheikhi MR, Gürgen S (2022) Deceleration behavior of multi-layer cork composites intercalated with a non-Newtonian material. Arch Civ Mech Eng 23(1):2

    Article  Google Scholar 

  22. Khaleel M, Soykan U, Çetin S (2021) Influences of turkey feather fiber loading on significant characteristics of rigid polyurethane foam: thermal degradation, heat insulation, acoustic performance, air permeability and cellular structure. Constr Build Mater 308:125014

    Article  Google Scholar 

  23. Begum H, Horoshenkov KV (2021) Acoustical properties of fiberglass blankets impregnated with silica aerogel. Appl Sci 11(10):4593

    Article  Google Scholar 

  24. Sheikhi MR, Gürgen S, Altuntas O (2022) Energy-absorbing and eco-friendly perspectives for cork and WKSF based composites under drop-weight impact machine. Machines 10(11):1050

    Article  Google Scholar 

  25. Cortês A, Almeida J, Santos MI, Tadeu A, De Brito J, Silva CM (2021) Environmental performance of a cork-based modular living wall from a life-cycle perspective. Build Environ 191:107614

    Article  Google Scholar 

  26. Gürgen S, Sofuoğlu MA (2021) Smart polymer integrated cork composites for enhanced vibration damping properties. Compos Struct 258:113200

    Article  Google Scholar 

  27. Hernández-Olivares F, Bollati MR, Del Rio M, Parga-Landa B (1999) Development of cork–gypsum composites for building applications. Constr Build Mater 13(4):179–186

    Article  Google Scholar 

  28. Gil L (2009) Cork composites: a review. Materials 2(3):776–789

    Article  Google Scholar 

  29. Barrigón Morillas JM, Montes González D, Vílchez-Gómez R, Gómez Escobar V, Maderuelo-Sanz R, Rey Gozalo G et al (2021) Virgin natural cork characterization as a sustainable material for use in acoustic solutions. Sustainability 13(9):4976

    Article  Google Scholar 

  30. Silva JM, Nunes CZ, Franco N, Gamboa PV (2011) Damage tolerant cork based composites for aerospace applications. Aeronaut J 115(1171):567–575

    Article  Google Scholar 

  31. Demertzi M, Silva RP, Neto B, Dias AC, Arroja L (2016) Cork stoppers supply chain: potential scenarios for environmental impact reduction. J Clean Prod 112:1985–1994

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Yay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yay, Ö., Hasanzadeh, M., Diltemiz, S.F., Gürgen, S. (2024). Cork Agglomerates in Acoustic Insulation. In: Gürgen, S. (eds) Cork-Based Materials in Engineering. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-51564-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51564-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51563-7

  • Online ISBN: 978-3-031-51564-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics