Skip to main content

Catalytic Methods for Sustainable Textile Dyeing

  • Chapter
  • First Online:
Sustainable Manufacturing Practices in the Textiles and Fashion Sector

Abstract

Dyeing of fabrics is one of the most important finishing steps of the textile industry. Fixation of dye over the textile fabric using various chemicals may cause environmental pollution. Generally, the fixation process is highly dependent on the compatibility between fabric and dye. Alkali and salts through which chemical bonds between dyes and fabrics have been conventionally employed for fixing active dye species. Conventional methods have been made to be sustainable by the treatment of fibers with physical techniques including ultrasound, ultraviolet, plasma, and microwave treatments prior to dyeing. Catalytic fixation of dyes using mordants, surfactants, and crosslinkers has been recognized to be promising from a practical point of view. Micellar catalysis has been recently introduced as an efficient, environmentally friendly, and less water-consuming dye fixation protocol. In this chapter, the basic structures and properties of textile fabrics and dyes, the mechanism of fixation of various dyes on different fabrics, and practical examples of sustainable dye fixation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed, N. S. (2005). The use of sodium edate in the dyeing of cotton with reactive dyes. Dyes and Pigments, 65(3), 221–225.

    Article  CAS  Google Scholar 

  • Ammayappan, L., Jose, S., & Arputha, R. A. (2016). Sustainable production processes in textile dyeing. Green Fashion, 1, 185–216.

    Article  Google Scholar 

  • Arivithamani, N., & Dev, V. R. (2018). Characterization and comparison of salt-free reactive dyed cationized cotton hosiery fabrics with that of conventional dyed cotton fabrics. Journal of Cleaner Production, 183, 579–589.

    Article  CAS  Google Scholar 

  • Atav, R. (2013). The use of new technologies in dyeing of proteinous fibers. Eco-friendly Textile Dyeing and Finishing, 16, 103–147.

    Google Scholar 

  • Bafana, A., Devi, S. S., & Chakrabarti, T. (2011). Azo dyes: Past, present and the future. Environmental Reviews, 19, 350–371.

    Article  CAS  Google Scholar 

  • Bahria, H., & Erbil, Y. (2016). UV technology for use in textile dyeing and printing: Photocured applications. Dyes and Pigments, 134, 442–447.

    Article  CAS  Google Scholar 

  • Baig, R., Hussain, D., Najam-Ul-Haq, M., et al. (2019). Eco-friendly route for dyeing of cotton fabric using three organic mordants in reactive dyes. Industria Textila, 70(1), 25–29.

    Article  CAS  Google Scholar 

  • Bairabathina, V., Shanmugam, K. S., & Chilukoti, G. R. (2022). A review on reverse micellar approach for natural fiber dyeing. Coloration Technology, 138(4), 329–341.

    Article  CAS  Google Scholar 

  • Benkhaya, S., M’rabet, S., Lgaz, H., El Bachiri, A., & El Harfi, A. (2022). Dyes: Classification, pollution, and environmental effects. In Dye biodegradation, mechanisms and techniques: Recent advances (pp. 1–50). Springer.

    Google Scholar 

  • Bhuiyan, M. A., Shahid, M. A., Hannan, M. A., & Kafi, M. A. (2012). Influence of mixed alkali on fixation of deep shade on single Jersey cotton fabrics with reactive dyes. Journal of Chemical Engineering, 27, 58–63.

    Article  Google Scholar 

  • Bukhari, M. N., Shabbir, M., Rather, L. J., et al. (2017). Dyeing studies and fastness properties of brown naphtoquinone colorant extracted from Juglans regia L on natural protein fiber using different metal salt mordants. Textiles and Clothing Sustainability, 3, 1–9.

    Article  Google Scholar 

  • Cai, G., Sun, L., Wu, J., & Wang, J. (2015). Influence of nonionic surfactant on hydrolysis of vinyl sulfone reactive dye. Journal of Surfactants and Detergents, 18(6), 1127–1135.

    Article  CAS  Google Scholar 

  • Choi, T. S., Shimizu, Y., Shirai, H., & Hamada, K. (2001). Disperse dyeing of polyester fiber using gemini surfactants containing ammonium cations as auxiliaries. Dyes and Pigments, 50(1), 55–65.

    Article  CAS  Google Scholar 

  • David, S. K., & Pailthorpe, M. T. (1999). Classification of textile fibres: Production, structure, and properties. In Forensic examination of fibres (p. 2). Ellis Horwood.

    Google Scholar 

  • El Harfi, S., & El Harfi, A. (2017). Classifications, properties and applications of textile dyes: A review. Applied Journal of Environmental Engineering Science, 3(3), 00000-3.

    Google Scholar 

  • Elsahida K, Fauzi A M, Sailah I, & Siregar I Z (2019, December) Sustainability of the use of natural dyes in the textile industry. In IOP Conference Series: Earth and Environmental Science (Vol. 399, No. 1, p. 012065). IOP Publishing.

    Google Scholar 

  • Fox, M. R. (1973). Fixation processes in dyeing. Review of Progress in Coloration and Related Topics, 4(1), 18–37.

    Article  CAS  Google Scholar 

  • Goswami, P., Blackburn, R. S., Taylor, J., & White, P. (2009). Dyeing behaviour of lyocell fabric: Effect of NaOH pre-treatment. Cellulose, 16, 481–489.

    Article  CAS  Google Scholar 

  • Grishanov, S. (2011). Structure and properties of textile materials. In Handbook of textile and industrial dyeing (pp. 28–63). Woodhead Publishing.

    Chapter  Google Scholar 

  • Gupta, B. S. (2008). Textile fiber morphology, structure and properties in relation to friction. In Friction in textile materials (pp. 3–36). Woodhead Publishing.

    Chapter  Google Scholar 

  • Haji, A., & Naebe, M. (2020). Cleaner dyeing of textiles using plasma treatment and natural dyes: A review. Journal of Cleaner Production, 265, 121866.

    Article  CAS  Google Scholar 

  • Hosen, M. D., Rabbi, M. F., Raihan, M. A., & Al Mamun, M. A. (2021). Effect of turmeric dye and biomordants on knitted cotton fabric coloration: A promising alternative to metallic mordanting. Cleaner Engineering and Technology, 3, 100124.

    Article  Google Scholar 

  • Hossain, M. Y., Sarker, S., & Zakaria, M. (2020). Influence of process parameters on exhaustion, fixation and color strength in dyeing of cellulose fiber with reactive dye. International Journal of Textile Science, 3(127), 2690–0106.

    Google Scholar 

  • Hynes, N. R., Kumar, J. S., Kamyab, H., et al. (2020). Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector – A comprehensive review. Journal of Cleaner Production, 272, 122636.

    Article  CAS  Google Scholar 

  • Iqbal, J., Bhatti, I. A., & Adeel, S. (2008). Effect of UV radiation on dyeing of cotton fabric with extracts of henna leaves. Indian Journal of Fibre & Textile Research, 33, 157–162.

    CAS  Google Scholar 

  • Ismal, Ö. (2016). Patterns from nature: Contact printing. Journal of Textile Association, 77(2), 81–91.

    Google Scholar 

  • Ä°ÅŸmal, Ö. E., & Yıldırım, L. (2019). Metal mordants and biomordants. In The impact and prospects of green chemistry for textile technology (pp. 57–82). Woodhead Publishing.

    Google Scholar 

  • Jabar, J. M., Ogunmokun, A. I., & Taleat, T. A. (2020). Color and fastness properties of mordanted Bridelia ferruginea B dyed cellulosic fabric. Fashion and Textiles, 7, 1–3.

    Article  Google Scholar 

  • Jun, J. H., Sawada, K., & Ueda, M. (2004). Application of perfluoropolyether reverse micelles in supercritical CO2 to dyeing process. Dyes and Pigments, 61(1), 17–22.

    Article  CAS  Google Scholar 

  • Kamel, M. M., El-Shishtawy, R. M., Hanna, H. L., & Ahmed, N. S. (2003). Ultrasonic-assisted dyeing: I. Nylon dyeability with reactive dyes. Polymer International, 52(3), 373–380.

    Article  CAS  Google Scholar 

  • Kan, C. W. (2018). Non-aqueous wool fiber dyeing process using reverse micellar approach. In 11th Annual TechConnect World Innovation Conference and Expo: Held Jointly with the 20th Annual Nanotech Conference and Expo, the 2018 SBIR/STTR Spring Innovation Conference, and the Defense TechConnect DTC Spring Conference 2018, TechConnect, pp. 249–252.

    Google Scholar 

  • Ketema, A., & Worku, A. (2020). Review on intermolecular forces between dyes used for polyester dyeing and polyester fiber. Journal of Chemistry, 2020, 1–7.

    Google Scholar 

  • Kirk-Othmer. (2004). Kirk-Othmer encyclopedia of chemical technology (p. 7). Wiley.

    Google Scholar 

  • Kozlowski, R. M., & Mackiewicz-Talarczyk, M. (Eds.). (2020). Handbook of natural fibres: Volume 1: Types, properties and factors affecting breeding and cultivation. Woodhead Publishing.

    Google Scholar 

  • Lewis, D. M. (2014). Developments in the chemistry of reactive dyes and their application processes. Coloration Technology, 130(6), 382–412.

    Article  CAS  Google Scholar 

  • Lewis, D. M., & Ho, Y. C. (1995). Improved fixation of dyes on polyamide fibres. Part 1: Using 1, 3, 5-triacroylamino-hexahydro-s-triazine as a crosslinking agent. Dyes and Pigments, 28(3), 171–192.

    Article  CAS  Google Scholar 

  • Lewis, D. M., & Vo, L. T. (2007). Dyeing cotton with reactive dyes under neutral conditions. Coloration Technology, 123(5), 306–311.

    Article  CAS  Google Scholar 

  • Lützel, G. (1966). Dye fixation by means of polyfunctional cross–linking agents. Journal of the Society of Dyers and Colourists, 82(8), 293–299.

    Article  Google Scholar 

  • Merdan, N., Akalin, M., Kocak, D., & Usta, I. (2004). Effects of ultrasonic energy on dyeing of polyamide (microfibre)/Lycra blends. Ultrasonics, 42(1–9), 165–168.

    Article  CAS  Google Scholar 

  • Millington, K. (1998). Using ultraviolet radiation to reduce pilling of knitted wool and cotton. Textile Research Journal, 68(6), 413–421.

    Article  CAS  Google Scholar 

  • Millington, K. R. (2006). UV technology: Applications in the textile industry. Journal of Textile Fibre Technology, 1–4.

    Google Scholar 

  • Miran, M. S., Manjum, M., Islam, M. M., et al. (2015). Micelle-assisted dyeing of cotton with reactive dyes. In Textile research conference 2015, Dhaka, Bangladesh.

    Google Scholar 

  • Niemeyer, E. D., & Bright, F. V. (1998). The pH within PFPE reverse micelles formed in supercritical CO2. Journal of Physical Chemistry B, 102(8), 1474–1478.

    Article  CAS  Google Scholar 

  • Oakes, J., & Gratton, P. (2003). Solubilisation of dyes by surfactant micelles. Part 2; Molecular interactions of azo dyes with cationic and zwitterionic surfactants. Coloration Technology, 119(2), 100–107.

    Article  CAS  Google Scholar 

  • Patel, H. (2018). Charcoal as an adsorbent for textile wastewater treatment. Separation Science and Technology, 53(17), 2797–2812.

    Article  CAS  Google Scholar 

  • Paul, D., Das, S. C., Islam, T., et al. (2017). Effect of alkali concentration on dyeing cotton knitted fabrics with reactive dyes. Journal of Chemistry, 11, 162–167.

    CAS  Google Scholar 

  • Prabu, H. G., & Sundrarajan, M. (2002). Effect of the bio-salt trisodium citrate in the dyeing of cotton. Coloration Technology, 118(3), 131–134.

    Article  CAS  Google Scholar 

  • Sawada, K., & Ueda, M. (2003a). Adsorption and fixation of a reactive dye on cotton in non-aqueous systems. Coloration Technology, 119(3), 182–186.

    Article  CAS  Google Scholar 

  • Sawada, K., & Ueda, M. (2003b). Dyeing of protein fiber in a reverse micellar system. Dyes and Pigments, 58(2), 99–103.

    Article  CAS  Google Scholar 

  • Sawada, K., Takagi, T., Jun, J. H., et al. (2002). Dyeing natural fibres in supercritical carbon dioxide using a nonionic surfactant reverse micellar system. Coloration Technology, 118(5), 233–237.

    Article  CAS  Google Scholar 

  • Saxena, S., & Raja, A. S. (2014). Natural dyes: Sources, chemistry, application and sustainability issues. In Roadmap to sustainable textiles and clothing: Eco-friendly raw materials, technologies, and processing methods (pp. 37–80). Springer.

    Chapter  Google Scholar 

  • Scalbi, S., Tarantini, M., & Mattioli, D. (2005). Efficient use of water in the textile finishing industry (pp. 1–18). E-Water (electronic publication of the European Water Association).

    Google Scholar 

  • Singh, G., Mathur, P., Singh, N., & Sheikh, J. (2019). Functionalization of wool fabric using kapok flower and bio-mordant. Sustainable Chemistry and Pharmacy, 14, 100184.

    Article  Google Scholar 

  • Sun, D., Guo, Q., & Liu, X. (2010). Investigation into dyeing acceleration efficiency of ultrasound energy. Ultrasonics, 50(4–5), 441–446.

    Article  CAS  Google Scholar 

  • Sun, D., Zhang, X., & Du, H. (2017). Application of liquid organic salt to cotton dyeing process with reactive dyes. Fibers and Polymers, 18, 1969–1974.

    Article  CAS  Google Scholar 

  • Tang, B., Zhang, S., Yang, J., & Liu, F. (2006). Synthesis of a novel water-soluble crosslinking polymeric dye with good dyeing properties. Dyes and Pigments, 68(1), 69–73.

    Article  CAS  Google Scholar 

  • Tang, A. Y. L., Lee, C. H., Wang, Y., & Kan, C. W. (2018). Dyeing properties of cotton with reactive dye in nonane nonaqueous reverse micelle system. ACS Omega, 3(3), 2812–2819.

    Article  CAS  Google Scholar 

  • Wang, Y., Lee, C. H., Tang, Y. L., & Kan, C. W. (2016). Dyeing cotton in alkane solvent using polyethylene glycol-based reverse micelle as reactive dye carrier. Cellulose, 23, 965–980.

    Article  CAS  Google Scholar 

  • Wolela, A. D. (2021). Effect and role of salt in cellulosic fabric dyeing. Advance Research in Textile Engineering, 6(1), 1061.

    Google Scholar 

  • Xie, K., Cheng, F., Zhao, W., & Xu, L. (2011). Micelle dyeing with low liquor ratio for reactive dyes using dialkyl maleic acid ester surfactants. Journal of Cleaner Production, 19(4), 332–336.

    Article  CAS  Google Scholar 

  • Yen, M. S. (2001). Application of chitosan/nonionic surfactant mixture in reactive dyes for dyeing wool fabrics. Journal of Applied Polymer Science, 80(14), 2859–2864.

    Article  CAS  Google Scholar 

  • Zhang, H. Y. (2014). Application of K/S value in determination of fixation rate. In Advanced materials research (Vol. 1048, pp. 116–119). Trans Tech Publications Ltd.

    Google Scholar 

  • Zhang, S., Tang, B., Yang, J., et al. (2000). Crosslinking dyes. Kirk-Othmer Encyclopedia of Chemical Technology, 4, 1–45.

    Google Scholar 

  • Zhang, S., Ma, W., Tang, B., & Shan, B. (2022). Innovation and application of dyes with high fixation. Chinese Journal of Chemical Engineering, 51, 146–152.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Mominul Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chowdhury, U.S., Rahman, F., Ehsan, M.F., Pabel, M.Y., Islam, M.M. (2024). Catalytic Methods for Sustainable Textile Dyeing. In: Muthu, S.S. (eds) Sustainable Manufacturing Practices in the Textiles and Fashion Sector. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-51362-6_7

Download citation

Publish with us

Policies and ethics