Skip to main content

Climate Change Implications in the Himalayas

  • Chapter
  • First Online:
The Himalayas in the Anthropocene

Abstract

The entire world is affected by climate change and variability, and the consequences are more pronounced in mountainous areas and their inhabitants. Himalayas is a huge mountainous region covering an area of 2400 km, includes parts of eight nations: Nepal, Bhutan, Bangladesh, China, Afghanistan, Burma, Pakistan and India. The Himalayan region is warming faster than the world average (0.08 °C per decade), and during the past six decades, precipitation has also increased dramatically. As a consequence, climate—induced disasters have also increased in terms of frequency and intensity. Additionally, climate-dependent sectors have already been impacted by changes in precipitation and temperature and will continue to do so. Hence, understanding the implications of climate in Himalayan region is vital since it’s impact is not only region—specific but has a trans—boundary effect. In this regard, this chapter addresses state of knowledge concerning the current status of climate change, draws out implication on water resources, forest, biodiversity, human health and tourism; along with adaptation and mitigation measures in Himalayas. To summarize, Greater Himalayas’ climate change issues can only be solved by enhancing regional cooperation in scientific research and policy decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aase, T. H., Chapagain, P., & Dangal, H. (2019). Multi-sited Himalayan households and the misleading rural–urban dichotomy. Area, 51(1), 174–181.

    Article  Google Scholar 

  • Abbas, Z., Khan, S. M., Alam, J., Peer, T., Abideen, Z., Bussmann, R. W., & Muhammad, S. (2021). Vegetation dynamics along altitudinal gradients in the Shigar Valley (Central Karakorum) Pakistan: Zonation, physiognomy, ecosystem services and environmental impacts. Pakistan Journal of Botany, 53(5), 1865–1874.

    Article  Google Scholar 

  • Acharya, B. K., Cao, C., Xu, M., Khanal, L., Naeem, S., & Pandit, S. (2018). Present and future of dengue fever in Nepal: Mapping climatic suitability by ecological niche model. International Journal of Environmental Research and Public Health, 15(2), 187.

    Article  Google Scholar 

  • Ahsan, S., Bhat, M. S., Alam, A., Farooq, H., & Shiekh, H. A. (2023). Complementary use of multi-model climate ensemble and Bayesian Model Averaging for projecting river hydrology in the Himalaya. Environmental Science and Pollution Research, 30(13), 38898–38920.

    Article  Google Scholar 

  • Ahsan, S., Bhat, M. S., Alam, A., Farooq, H., & Shiekh, H. A. (2022). Evaluating the impact of climate change on extreme temperature and precipitation events over the Kashmir Himalaya. Climate Dynamics, 1–19.

    Google Scholar 

  • Alahmad, B., Khraishah, H., Royé, D., Vicedo-Cabrera, A.M., Guo, Y., Papatheodorou, S.I., Achilleos, S., Acquaotta, F., Armstrong, B., Bell, M.L., & Pan, S.C., 2023. Associations between extreme temperatures and cardiovascular cause-specific mortality: results from 27 countries. Circulation, 147(1), 35–46.

    Google Scholar 

  • Alamgir, M., Mukul, S. A., & Turton, S. M. (2015). Modelling spatial distribution of critically endangered Asian elephant and Hoolock gibbon in Bangladesh forest ecosystems under a changing climate. Applied Geography, 60, 10–19.

    Article  Google Scholar 

  • Aryal, A., Brunton, D., Ji, W., Barraclough, R. K., & Raubenheimer, D. (2014). Human–carnivore conflict: Ecological and economical sustainability of predation on livestock by snow leopard and other carnivores in the Himalaya. Sustainability Science, 9, 321–329.

    Article  Google Scholar 

  • Bajracharya, S. R., Pradhananga, S., Shrestha, A. B., & Thapa, R. (2023). Future climate and its potential impact on the spatial and temporal hydrological regime in the Koshi Basin. Nepal. Journal of Hydrology: Regional Studies, 45, 101316.

    Google Scholar 

  • Ballesteros-Cánovas, J. A., et al. (2018). Climate warming enhances snow avalanche risk in the Western Himalayas. PNAS, 115(13), 3410–3415. https://doi.org/10.1073/pnas.1716913115

    Article  CAS  Google Scholar 

  • Banerji, G., & Basu, S. (2010). Adapting to climate change in Himalayan cold deserts. International Journal of Climate Change Strategies and Management.

    Google Scholar 

  • Bharti, N., Khandekar, N., Sengupta, P., Bhadwal, S., & Kochhar, I. (2020). Dynamics of urban water supply management of two Himalayan towns in India. Water Policy, 22(S1), 65–89.

    Article  Google Scholar 

  • Bhatta, B., Shrestha, S., Shrestha, P. K., & Talchabhadel, R. (2019). Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. CATENA, 181, 104082.

    Article  Google Scholar 

  • Bhattarai, I., Gani, N. D., & Xue, L. (2021). Geomorphological responses of rivers to active tectonics along the Siwalik Hills, Midwestern Nepalese Himalaya. Journal of Mountain Science, 18(5), 1268–1294.

    Article  Google Scholar 

  • Biswas, J., & Bhattacharya, S. (2023). Future changes in monsoon extreme climate indices over the Sikkim Himalayas and West Bengal. Dynamics of Atmospheres and Oceans, 101, 101346.

    Article  Google Scholar 

  • Bocchiola, D., Brunetti, L., Soncini, A., Polinelli, F., & Gianinetto, M. (2019). Impact of climate change on agricultural productivity and food security in the Himalayas: A case study in Nepal. Agricultural Systems, 171, 113–125.

    Article  Google Scholar 

  • Bolch, T., Shea, J. M., Liu, S., Azam, F. M., Gao, Y., Gruber, S., ... & Zhang, Y. (2019). Status and change of the cryosphere in the extended Hindu Kush Himalaya region. The Hindu Kush Himalaya assessment: Mountains, Climate Change, Sustainability and People, 209–255.

    Google Scholar 

  • Bongaarts, J. (2019). IPBES, 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services. Wiley Online Library.

    Google Scholar 

  • Boretti, A., & Rosa, L. (2019). Reassessing the projections of the world water development report. NPJ Clean Water, 2(1), 15.

    Article  Google Scholar 

  • Bradford, J. B., Schlaepfer, D. R., Lauenroth, W. K., Palmquist, K. A., Chambers, J. C., Maestas, J. D., & Campbell, S. B. (2019). Climate-driven shifts in soil temperature and moisture regimes suggest opportunities to enhance assessments of dryland resilience and resistance. Frontiers in Ecology and Evolution, 7, 358.

    Article  Google Scholar 

  • Brooks, D. R., Hoberg, E. P., & Boeger, W. A. (2019). The Stockholm paradigm: Climate change and emerging disease. University of Chicago Press.

    Google Scholar 

  • Cao, J., Yeh, E. T., Holden, N. M., Qin, Y., & Ren, Z. (2013). The roles of overgrazing, climate change and policy as drivers of degradation of China’s grasslands. Nomadic Peoples, 17(2), 82–101.

    Article  Google Scholar 

  • Chakraborty, P., & Ghosal, S. (2022). Status of mountain-tourism and research in the Indian Himalayan Region: A systematic review. Asia-Pacific Journal of Regional Science, 6(3), 863–897.

    Article  Google Scholar 

  • Chakraborty, A., Saha, S., Sachdeva, K., & Joshi, P. K. (2018). Vulnerability of forests in the Himalayan region to climate change impacts and anthropogenic disturbances: A systematic review. Regional Environmental Change, 18, 1783–1799.

    Article  Google Scholar 

  • Chandra Sekar, K., Manikandan, R., & Srivastava, S. K. (2012). Invasive alien plants of Uttarakhand Himalaya. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 82, 375–383.

    Article  Google Scholar 

  • Chaudhari, S., Felfelani, F., Shin, S., & Pokhrel, Y. (2018). Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century. Journal of Hydrology, 560, 342–353.

    Article  Google Scholar 

  • Chausson, A., Turner, B., Seddon, D., Chabaneix, N., Girardin, C.A., Kapos, V., Key, I., Roe, D., Smith, A., Woroniecki, S., & Seddon, N. (2020). Mapping the effectiveness of nature‐based solutions for climate change adaptation. Global Change Biology, 26(11), 6134–6155.

    Google Scholar 

  • Chhetri, P. K., & Cairns, D. M. (2015). Contemporary and historic population structure of Abies spectabilis at treeline in Barun valley, eastern Nepal Himalaya. Journal of Mountain Science, 12, 558–570.

    Article  Google Scholar 

  • Chhogyel, N., Kumar, L., Bajgai, Y., & Hasan, M. K. (2020). Perception of farmers on climate change and its impacts on agriculture across various altitudinal zones of Bhutan Himalayas. International Journal of Environmental Science and Technology, 17, 3607–3620.

    Article  Google Scholar 

  • Cianconi, P., Betrò, S., & Janiri, L. (2020). The impact of climate change on mental health: A systematic descriptive review. Frontiers in Psychiatry, 11, 74.

    Article  Google Scholar 

  • Dad, J. M., Muslim, M., Rashid, I., & Reshi, Z. A. (2021). Time series analysis of climate variability and trends in Kashmir Himalaya. Ecological Indicators, 126, 107690.

    Article  Google Scholar 

  • Dahal, D. S., & Cao, S. (2017). Sustainability assessment of community forestry practices in Nepal: Literature review and recommendations to improve community management. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 87, 1–11.

    Article  Google Scholar 

  • Dahal, K.R., Dahal, P., Adhikari, R.K., Naukkarinen, V., Panday, D., Bista, N., Helenius, J., & Marambe, B., 2022a. Climate change impacts and adaptation in a hill farming system of the Himalayan region: climatic trends, farmers’ perceptions and practices. Climate, 11(1), p.11

    Google Scholar 

  • Das, S., & Mishra, A. J. (2022). Dynamics of indigenous community’s food and culture in the time of climate change in the Himalayan region. Journal of Ethnic Foods, 9(1), 1.

    Article  Google Scholar 

  • Das, P. V. (2021). People’s climate knowledge versus scientists’ climate knowledge: a study of apple farming communities in Western Himalayas, India. Geo Journal, 1–12

    Google Scholar 

  • Dash, S. K., Jenamani, R. K., Kalsi, S. R., & Panda, S. K. (2007). Some evidence of climate change in twentieth-century India. Climatic Change, 85(3–4), 299–321.

    Article  Google Scholar 

  • Devi, S., Sharma, P., Sharma, R., & Thakur, M. (2023). Current Status and Medicinal Prominence of Arnebia euchroma (Ratanjot): A Critically Endangered Plant of Trans-Himalayan Region. Recent Patents on Biotechnology, 17(1), 92–102.

    Article  CAS  Google Scholar 

  • Dhamala, M. K., Aryal, P. C., Suwal, M. K., Bhatta, S., & Bhuju, D. R. (2020). Population structure and regeneration of Himalayan endemic Larix species in three high-altitude valleys in Nepal Himalaya. Journal of Ecology and Environment, 44(1), 1–11.

    Article  Google Scholar 

  • Dhimal, M., Bhandari, D., Dhimal, M.L., Kafle, N., Pyakurel, P., Mahotra, N., Akhtar, S., Ismail, T., Dhiman, R.C., Groneberg, D.A., & Shrestha, U.B. (2021). Impact of climate change on health and well-being of people in Hindu Kush Himalayan region: a narrative review. Frontiers in Physiology, 12, 651189.

    Google Scholar 

  • Dikshit, A., Sarkar, R., Pradhan, B., Segoni, S., & Alamri, A. M. (2020). Rainfall induced landslide studies in Indian Himalayan region: A critical review. Applied Sciences, 10(7), 2466.

    Article  CAS  Google Scholar 

  • Dileepkumar, R., AchutaRao, K., & Arulalan, T. (2018). Human influence on sub-regional surface air temperature change over India. Science and Reports, 8, 8967. https://doi.org/10.1038/s41598-018-27185-8

    Article  CAS  Google Scholar 

  • Dimri, A. P., Kumar, D., Choudhary, A., & Maharana, P. (2018). Future changes over the Himalayas: Mean temperature. Global and Planetary Change, 162, 235–251.

    Article  Google Scholar 

  • Diodato, N., Bellocchi, G., & Tartari, G. (2012). How do Himalayan areas respond to global warming? International Journal of Climatology, 32(7), 975–982.

    Article  Google Scholar 

  • Dorji, S., Rajaratnam, R., & Vernes, K. (2019). Mammal richness and diversity in a Himalayan hotspot: The role of protected areas in conserving Bhutan’s mammals. Biodiversity and Conservation, 28(12), 3277–3297.

    Article  Google Scholar 

  • Du, G., Zhang, Y., Yang, Z., Guo, C., Yao, X., & Sun, D. (2019). Landslide susceptibility mapping in the region of eastern Himalayan syntaxis, Tibetan Plateau, China: A comparison between analytical hierarchy process information value and logistic regression-information value methods. Bulletin of Engineering Geology and the Environment, 78, 4201–4215.

    Article  Google Scholar 

  • Fakhri, M., Dokohaki, H., Eslamian, S., Fazeli Farsani, I., & Farzaneh, M. R. (2014). Flow and sediment transport modeling in rivers. Handbook of Engineering Hydrology, 2, 233–275.

    Google Scholar 

  • Filippi, L., Palazzi, E., von Hardenberg, J., & Provenzale, A. (2014). Multidecadal variations in the relationship between the NAO and winter precipitation in the Hindu Kush-Karakoram. Journal of Climate, 27(20), 7890–7902.

    Article  Google Scholar 

  • Forrest, J.L., Wikramanayake, E., Shrestha, R., Areendran, G., Gyeltshen, K., Maheshwari, A., Mazumdar, S., Naidoo, R., Thapa, G.J., & Thapa, K. (2012). Conservation and climate change: Assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya. Biological Conservation, 150(1), pp.129–135.

    Google Scholar 

  • Forsythe, N., Fowler, H. J., Li, X. F., Blenkinsop, S., & Pritchard, D. (2017). Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nature Climate Change, 7(9), 664–670.

    Article  Google Scholar 

  • Fowler, H. J., & Archer, D. R. (2005). Hydro-climatological variability in the Upper Indus Basin and implications for water resources. Regional Hydrological Impacts of Climatic Change: Impact Assessment and Decision Making.

    Google Scholar 

  • Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8), 2161–2181.

    Article  Google Scholar 

  • Garcia-Soto, C., Cheng, L., Caesar, L., Schmidtko, S., Jewett, E. B., Cheripka, A., Rigor, I., Caballero, A., Chiba, S., Báez, J. C., & Zielinski, T., 2021. An overview of ocean climate change indicators: Sea surface temperature, ocean heat content, ocean pH, dissolved oxygen concentration, arctic sea ice extent, thickness and volume, sea level and strength of the AMOC (Atlantic Meridional Overturning Circulation). Frontiers in Marine Science, 8, 642372

    Google Scholar 

  • Grêt-Regamey, A., Huber, S. H., & Huber, R. (2019). Actors’ diversity and the resilience of social-ecological systems to global change. Nature Sustainability, 2(4), 290–297.

    Article  Google Scholar 

  • Gul, C., Mahapatra, P. S., Kang, S., Singh, P. K., Wu, X., He, C., Kumar, R., Rai, M., Xu, Y., & Puppala, S. P. (2021). Black carbon concentration in the central Himalayas: Impact on glacier melt and potential source contribution. Environmental Pollution, 275, 116544

    Google Scholar 

  • Gupta, V., Kumar, S., Kaur, R., & Tandon, R. S. (2022b). Regional-scale landslide susceptibility assessment for the hilly state of Uttarakhand, NW Himalaya. India. Journal of Earth System Science, 131(1), 2.

    Article  Google Scholar 

  • Gupta, N., Das, J., & Paul, J. X. (2022). Climate change—induced natural disaster: A Case Study of 2013 Kedarnath Disaster, Uttrakhand. In 5th World Congress on Disaster Management: Volume II. Taylor & Francis.

    Google Scholar 

  • Gurung, D. R., Maharjan, S. B., Shrestha, A. B., Shrestha, M. S., Bajracharya, S. R., & Murthy, M. S. R. (2017). Climate and topographic controls on snow cover dynamics in the Hindu Kush Himalaya. International Journal of Climatology, 37(10), 3873–3882.

    Article  Google Scholar 

  • Han, Y., Ma, Y., Wang, Z., Xie, Z., Sun, G., Wang, B., Ma, W., Su, R., Hu, W., & Fan, Y. (2021). Variation characteristics of temperature and precipitation on the northern slopes of the Himalaya region from 1979 to 2018. Atmospheric Research, 253, p.105481

    Google Scholar 

  • Hanna, R., Hayter, R., & Clapp, A. (2017). Threshold Firms: Innovation, Design and Collaboration in British Columbia’s Forest Economy. Growth and Change, 48(4), 700–718.

    Article  Google Scholar 

  • Haq, S. M., Amjad, M. S., Waheed, M., Bussmann, R. W., Ali, K., & Jones, D. A. (2023). Vegetation communities and identification of indicator species in the riparian areas of Zabarwan mountain range in the Kashmir Himalaya. Environmental and Sustainability Indicators, 100277.

    Google Scholar 

  • Hock, R., G. Rasul, C. Adler, B. Cáceres, S. Gruber, Y. Hirabayashi, M. Jackson, A. Kääb, S. Kang, S. Kutuzov, Al. Milner, U. Molau, S. Morin, B. Orlove, and H. Steltzer, 2019: High Mountain Areas. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 131–202. https://doi.org/10.1017/9781009157964.004.

  • Hoy, A., Katel, O., Thapa, P., Dendup, N., & Matschullat, J. (2016). Climatic changes and their impact on socio-economic sectors in the Bhutan Himalayas: An implementation strategy. Regional Environmental Change, 16, 1401–1415.

    Article  Google Scholar 

  • Hussain, A., Rasul, G., Mahapatra, B., & Tuladhar, S. (2016). Household food security in the face of climate change in the Hindu-Kush Himalayan region. Food Security, 8, 921–937.

    Article  Google Scholar 

  • Hussain, A., Cao, J., Hussain, I., Begum, S., Akhtar, M., Wu, X., Guan, Y., & Zhou, J. (2021). Observed trends and variability of temperature and precipitation and their global teleconnections in the Upper Indus Basin, Hindukush-Karakoram-Himalaya. Atmosphere, 12(8), 973

    Google Scholar 

  • Ingty, T. (2021). Pastoralism in the highest peaks: Role of the traditional grazing systems in maintaining biodiversity and ecosystem function in the alpine Himalaya. PLoS ONE, 16(1), e0245221.

    Article  CAS  Google Scholar 

  • Ingty, T., & Bawa, K. S. (2012). Climate change and indigenous people. Climate change in Sikkim: patterns, impacts and initiatives. Information and Public Relations Department, Government of Sikkim, Gangtok, India.[online], 275–290.

    Google Scholar 

  • IPCC (2007): Climate change the physical science basis. In Agu fall meeting abstracts (Vol. 2007, pp. U43D-01).

    Google Scholar 

  • IPCC (2014). Impacts, adaptation and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1132.

    Google Scholar 

  • Jena, P., Garg, S., & Azad, S. (2020). Performance analysis of IMD high-resolution gridded rainfall (0.25°× 0.25°) and satellite estimates for detecting cloudburst events over the northwest Himalayas. Journal of Hydrometeorology, 21(7), 1549–1569.

    Google Scholar 

  • Joshi, A. K., & Joshi, P. K. (2019). Forest ecosystem services in the central Himalaya: Local benefits and global relevance. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89, 785–792.

    Article  Google Scholar 

  • Joshi, S. (2021). Climate change justice and global resource commons: Local and global postcolonial political ecologies. Routledge.

    Google Scholar 

  • Joya, E., Bromand, M. T., Murtaza, K. O., & Dar, R. A. (2021). Current glacier status and ELA changes since the Late Pleistocene in the Hindu Kush Mountains of Afghanistan. Journal of Asian Earth Sciences, 219, 104897.

    Article  Google Scholar 

  • Kapnick, S. B., Delworth, T. L., Ashfaq, M., Malyshev, S., & Milly, P. C. (2014). Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nature Geoscience, 7(11), 834–840.

    Article  CAS  Google Scholar 

  • Kattel, G. R. (2022). Climate warming in the Himalayas threatens biodiversity, ecosystem functioning and ecosystem services in the 21st century: Is there a better solution? Biodiversity and Conservation, 31(8–9), 2017–2044.

    Article  Google Scholar 

  • Kc, K. B., Tzadok, E., & Pant, L. (2022). Himalayan ecosystem services and climate change driven agricultural frontiers: A scoping review. Discover Sustainability, 3(1), 35.

    Article  Google Scholar 

  • Keith, H., Vardon, M., Obst, C., Young, V., Houghton, R. A., & Mackey, B. (2021). Evaluating nature-based solutions for climate mitigation and conservation requires comprehensive carbon accounting. Science of the Total Environment, 769, 144341.

    Article  CAS  Google Scholar 

  • Khattak, M. S., Babel, M. S., & Sharif, M. (2011). Hydro-meteorological trends in the upper Indus River basin in Pakistan. Climate Research, 46(2), 103–119.

    Article  Google Scholar 

  • King, O., Bhattacharya, A., Bhambri, R., & Bolch, T. (2019). Glacial lakes exacerbate Himalayan glacier mass loss. Scientific Reports, 9(1), 18145.

    Article  Google Scholar 

  • Kious, W. J., & Tilling, R. I. (1996). This Dynamic Earth: The Story of Plate Tectonics. DIANE Publishing.

    Google Scholar 

  • Koirala, A., & Shrestha, K. B. (2017). Effects of climate change on the livestock population in Mustang District. Nepal. Asian Journal of Agriculture and Development, 14(1), 37–49.

    Article  Google Scholar 

  • Körner, C. (2007). The use of ‘altitude’in ecological research. Trends in Ecology & Evolution, 22(11), 569–574.

    Article  Google Scholar 

  • Kotru, R. K., Shakya, B., Joshi, S., Gurung, J., Ali, G., Amatya, S., & Pant, B. (2020). Biodiversity conservation and management in the Hindu Kush Himalayan Region: Are transboundary landscapes a promising solution? Mountain Research and Development, 40(2), A15.

    Article  Google Scholar 

  • Kranaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., & Immerzeel, W. W. (2017). Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature, 549, 257–260.

    Article  Google Scholar 

  • Krishnamurti, T.N., Kumar, V., Simon, A., Thomas, A., Bhardwaj, A., Das, S., Senroy, S. and Roy Bhowmik, S.K., 2017. March of buoyancy elements during extreme rainfall over India. Climate dynamics, 48, pp.1931–1951.

    Google Scholar 

  • Krishnan, R., Shrestha, A. B., Ren, G., Rajbhandari, R., Saeed, S., Sanjay, J., ... & Ren, Y. (2019). Unravelling climate change in the Hindu Kush Himalaya: rapid warming in the mountains and increasing extremes. The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability And People, 57–97.

    Google Scholar 

  • Krishnan, R., Gnanaseelan, C., Sanjay, J., Swapna, P., Dhara, C., Sabin, T. P., ... & Niyogi, D. (2020). Introduction to climate change over the Indian region. Assessment of Climate Change Over The Indian Region: A Report of the Ministry of Earth Sciences (Moes), Government of India, 1–20.

    Google Scholar 

  • Kulkarni, A., Patwardhan, S., Kumar, K. K., Ashok, K., & Krishnan, R. (2013). Projected climate change in the Hindu Kush-Himalayan region by using the high-resolution regional climate model PRECIS. Mountain Research and Development, 33(2), 142–151.

    Article  Google Scholar 

  • Kulkarni, A. V., Shirsat, T. S., Kulkarni, A., Negi, H. S., Bahuguna, I. M., & Thamban, M. (2021). State of Himalayan cryosphere and implications for water security. Water Security, 14, 100101.

    Article  Google Scholar 

  • Kulkarni, A. V., & Karyakarte, Y. (2014). Observed changes in Himalayan glaciers. Current Science, 237–244.

    Google Scholar 

  • Kuruppath, S. V., & Tamma, K. (2022). Local Climate Change Perceptions and Adaptation Strategies Across the Central and Eastern Himalayas-A Review.

    Google Scholar 

  • Lamsal, P., Kumar, L., Atreya, K., & Pant, K. P. (2017). Vulnerability and impacts of climate change on forest and freshwater wetland ecosystems in Nepal: A review. Ambio, 46, 915–930.

    Article  Google Scholar 

  • Li, J., & Xu, X. (2023). Glacier Change and Its Response to Climate Change in Western China. Land, 12(3), 623.

    Article  Google Scholar 

  • Li, H., Haugen, J. E., & Xu, C. Y. (2018). Precipitation pattern in the Western Himalayas revealed by four datasets. Hydrology and Earth System Sciences, 22(10), 5097–5110.

    Article  Google Scholar 

  • Liu, Y., Berner, Z., Massonne, H. J., & Zhong, D. (2006). Carbonatite-like dykes from the eastern Himalayan syntaxis: Geochemical, isotopic, and petrogenetic evidence for melting of metasedimentary carbonate rocks within the orogenic crust. Journal of Asian Earth Sciences, 26(1), 105–120.

    Article  CAS  Google Scholar 

  • Liu, X., Liu, Z., Ding, G., & Jiang, B. (2017). Projected burden of disease for bacillary dysentery due to flood events in Guangxi, China. Science of the Total Environment, 601, 1298–1305.

    Article  Google Scholar 

  • Luxom, N. M., Singh, R., Theengh, L., Shrestha, P., & Sharma, R. K. (2022). Pastoral practices, pressures, and human-wildlife relations in high altitude rangelands of eastern Himalaya: A case study of the Dokpa pastoralists of North Sikkim. Pastoralism, 12(1), 1–19.

    Article  Google Scholar 

  • Manish, K., Telwala, Y., Nautiyal, D. C., & Pandit, M. K. (2016). Modelling the impacts of future climate change on plant communities in the Himalaya: A case study from Eastern Himalaya, India. Modeling Earth Systems and Environment, 2, 1–12.

    Article  Google Scholar 

  • Meng, X., Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Milojevic, A., ... & Kan, H. (2021). Short term associations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mortality: multilocation analysis in 398 cities. bmj, 372.

    Google Scholar 

  • Mir, R. A., Jain, S. K., Saraf, A. K., & Goswami, A. (2015). Accuracy assessment and trend analysis of MODIS-derived data on snow-covered areas in the Sutlej basin, Western Himalayas. International Journal of Remote Sensing, 36(15), 3837–3858.

    Article  Google Scholar 

  • Mir, R. A., Jain, S. K., Lohani, A. K., & Saraf, A. K. (2018). Glacier recession and glacial lake outburst flood studies in Zanskar basin, western Himalaya. Journal of Hydrology, 564, 376–396.

    Article  Google Scholar 

  • Mir, A. H., Tyub, S., & Kamili, A. N. (2020). Ecology, distribution mapping and conservation implications of four critically endangered endemic plants of Kashmir Himalaya. Saudi Journal of Biological Sciences, 27(9), 2380–2389.

    Article  Google Scholar 

  • Mishra, P. (2017). Green human resource management: A framework for sustainable organizational development in an emerging economy. International Journal of Organizational Analysis, 25(5), 762–788.

    Article  Google Scholar 

  • Mishra, P., Bandyopadhyay, A., & Bhadra, A. (2023). Sensitivity assessment of hydrologic processes in an eastern Himalayan watershed to potential climate change using RHESSYS. Sustainable Water Resources Management, 9(3), 87.

    Article  Google Scholar 

  • Mishra, A., Appadurai, A. N., Choudhury, D., Regmi, B. R., Kelkar, U., Alam, M., ... & Sharma, U. (2019). Adaptation to climate change in the Hindu Kush Himalaya: Stronger action urgently needed. The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People, 457–490.

    Google Scholar 

  • Moktan, M. R., Norbu, L., Nirola, H., Dukpa, K., Rai, T. B., & Dorji, R. (2008). Ecological and social aspects of transhumant herding in Bhutan. Mountain Research and Development, 28(1), 41–48.

    Article  Google Scholar 

  • Munt, D. D., Muñoz-Rodríguez, P., Marques, I., & Saiz, J. C. M. (2016). Effects of climate change on threatened Spanish medicinal and aromatic species: Predicting future trends and defining conservation guidelines. Israel Journal of Plant Sciences, 63(4), 309–319. https://doi.org/10.1080/07929978.2016.1258257

    Article  Google Scholar 

  • Nazari-Sharabian, M., Ahmad, S., & Karakouzian, M. (2018). Climate change and eutrophication: A short review. Engineering, Technology and Applied Science Research, 8(6), 3668.

    Article  Google Scholar 

  • Negi, V. S., Tiwari, D. C., Singh, L., Thakur, S., & Bhatt, I. D. (2022). Review and synthesis of climate change studies in the Himalayan region. Environment, Development and Sustainability, 24(9), 10471–10502.

    Article  Google Scholar 

  • Nepal, S. (2016). Impacts of climate change on the hydrological regime of the Koshi river basin in the Himalayan region. Journal of Hydro-Environment Research, 10, 76–89.

    Article  Google Scholar 

  • Nie, Y., Sheng, Y., Liu, Q., Liu, L., Liu, S., Zhang, Y., & Song, C. (2017). A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sensing of Environment, 189, 1–13.

    Article  Google Scholar 

  • Nori, M. (2019). Herding through uncertainties–regional perspectives. Exploring the interfaces of pastoralists and uncertainty. Results from a literature review. Exploring the Interfaces of Pastoralists and Uncertainty. Results from a Literature Review (September 2019). Robert Schuman Centre for Advanced Studies Research Paper No. RSCAS, 68.

    Google Scholar 

  • Nüsser, M., & Schmidt, S. (2017). Nanga Parbat revisited: Evolution and dynamics of sociohydrological interactions in the Northwestern Himalaya. Annals of the American Association of Geographers, 107(2), 403–415.

    Article  Google Scholar 

  • Nüsser, M., Dame, J., Parveen, S., Kraus, B., Baghel, R., & Schmidt, S. (2019). Cryosphere-fed irrigation networks in the northwestern Himalaya: Precarious livelihoods and adaptation strategies under the impact of climate change. Mountain Research and Development, 39(2), R1–R11.

    Article  Google Scholar 

  • Olokeogun, O. S., & Kumar, M. (2020). An indicator based approach for assessing the vulnerability of riparian ecosystem under the influence of urbanization in the Indian Himalayan city. Dehradun. Ecological Indicators, 119, 106796.

    Article  Google Scholar 

  • Osaka, S., Bellamy, R., & Castree, N. (2021). Framing “nature-based” solutions to climate change. Wiley Interdisciplinary Reviews: Climate Change, 12(5), e729.

    Google Scholar 

  • Palazzi, E., von Hardenberg, J., & Provenzale, A. (2013). Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. Journal of the Geological Society Australia, 118(1), 85–100. https://doi.org/10.1029/2012JD018697

    Article  Google Scholar 

  • Palomo, I. (2017). Climate change impacts on ecosystem services in high mountain areas: A literature review. Mountain Research and Development, 37(2), 179–187.

    Article  Google Scholar 

  • Pandey, R. (2021). Male out-migration from the Himalaya: Implications in gender roles and household food (in) security in the Kaligandaki Basin. Nepal. Migration and Development, 10(3), 313–341.

    Article  Google Scholar 

  • Pandit, A., Jain, A., Singha, R., Suting, A., Jamir, S., Pradhan, N. S., & Choudhury, D. (2016). Community perceptions and responses to climate variability: Insights from the Himalayas. Climate Change Adaptation Strategies–An Upstream-downstream Perspective, 179–194.

    Google Scholar 

  • Pant, G. B., Kumar, P. P., Revadekar, J. V., & Singh, N. (2018). Climate change in the Himalayas. Springer International Publishing.

    Google Scholar 

  • Parvaze, S., Khan, J. N., Kumar, R., & Allaie, S. P. (2021). Temporal flood forecasting for trans-boundary Jhelum River of Greater Himalayas. Theoretical and Applied Climatology, 144, 493–506.

    Article  Google Scholar 

  • Paudel, B., Zhang, Y., Yan, J., Rai, R., Li, L., Wu, X., Chapagain, P.S. and Khanal, N.R. (2020). Farmers’ understanding of climate change in Nepal Himalayas: important determinants and implications for developing adaptation strategies. Climatic Change, 158, 485–502.

    Google Scholar 

  • Peh, K.S.-H., Thapa, I., Basnyat, M., Balmford, A., Bhattarai, G. P., Bradbury, R. B., Brown, C., Butchart, S. H. M., Dhakal, M., & Gurung, H. (2016). Synergies between biodiversity conservation and ecosystem service provision: Lessons on integrated ecosystem service valuation from a Himalayan protected area. Nepal. Ecosystem Services, 22, 359–369.

    Article  Google Scholar 

  • Piya, L., Maharjan, K. L., & Joshi, N. P. (2012). Perceptions and realities of climate change among the Chepang communities in rural mid-hills of Nepal. Journal of Contemporary India Studies: Space and Society, Hiroshima University, 2(5), 35–50.

    Google Scholar 

  • Piya, L., Maharjan, K. L., & Joshi, N. P. (2013). Determinants of adaptation practices to climate change by Chepang households in the rural Mid-Hills of Nepal. Regional Environmental Change, 13, 437–447.

    Article  Google Scholar 

  • Priya, P., Krishnan, R., Mujumdar, M., & Houze, R. A. (2017). Changing monsoon and midlatitude circulation interactions over the Western Himalayas and possible links to occurrences of extreme precipitation. Climate Dynamics, 49, 2351–2364.

    Article  Google Scholar 

  • Qamer, F. M., Shehzad, K., Abbas, S., Murthy, M. S. R., Xi, C., Gilani, H., & Bajracharya, B. (2016). Mapping deforestation and forest degradation patterns in western Himalaya. Pakistan. Remote Sensing, 8(5), 385.

    Article  Google Scholar 

  • Rafiq, M., Meraj, G., Kesarkar, A. P., Farooq, M., Singh, S. K., & Kanga, S. (2022). Hazard mitigation and climate change in the Himalayas–policy and decision making. Disaster Management in the Complex Himalayan Terrains: Natural Hazard Management, Methodologies and Policy Implications (pp. 169–182). Springer International Publishing.

    Chapter  Google Scholar 

  • Rajbhandari, R., Shrestha, A. B., Kulkarni, A., Patwardhan, S. K., & Bajracharya, S. R. (2015). Projected changes in climate over the Indus river basin using a high resolution regional climate model (PRECIS). Climate Dynamics, 44, 339–357.

    Article  Google Scholar 

  • Rajbhandari, R., Shrestha, A. B., Nepal, S., Wahid, S., & Ren, G. Y. (2017). Extreme climate projections over the transboundary Koshi River Basin using a high resolution regional climate model. Advances in Climate Change Research, 8(3), 199–211.

    Article  Google Scholar 

  • Ramkrishnan, R., Kolathayar, S., & Sitharam, T. G. (2021). Probabilistic seismic hazard analysis of North and Central Himalayas using regional ground motion prediction equations. Bulletin of Engineering Geology and the Environment, 80, 8137–8157.

    Article  Google Scholar 

  • Ramya, A., Poornima, R., Karthikeyan, G., Priyatharshini, S., Thanuja, K. G., & Dhevagi, P. (2023). Climate-Induced and Geophysical Disasters and Risk Reduction Management in Mountains Regions. Climate Change Adaptation, Risk Management and Sustainable Practices in the Himalaya (pp. 361–405). Springer International Publishing.

    Chapter  Google Scholar 

  • Rasmussen, K. L., Hill, A. J., Toma, V. E., Zuluaga, M. D., Webster, P. J., & Houze, R. A., Jr. (2015). Multiscale analysis of three consecutive years of anomalous flooding in Pakistan. Quarterly Journal of the Royal Meteorological Society, 141(689), 1259–1276.

    Article  Google Scholar 

  • Rasul, G., & Sharma, B. (2016). The nexus approach to water–energy–food security: An option for adaptation to climate change. Climate Policy, 16(6), 682–702.

    Article  Google Scholar 

  • Rasul, G., Hussain, A., Mahapatra, B., & Dangol, N. (2018). Food and nutrition security in the Hindu Kush Himalayan region. Journal of the Science of Food and Agriculture, 98(2), 429–438.

    Article  CAS  Google Scholar 

  • Rasul, G., Saboor, A., Tiwari, P. C., Hussain, A., Ghosh, N., & Chettri, G. B. (2019). Food and nutrition security in the Hindu Kush Himalaya: Unique challenges and niche opportunities. The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People, 301–338.

    Google Scholar 

  • Rather, M. A., Satish Kumar, J., Farooq, M., & Rashid, H. (2017). Assessing the influence of watershed characteristics on soil erosion susceptibility of Jhelum basin in Kashmir Himalayas. Arabian Journal of Geosciences, 10(3), 59.

    Article  Google Scholar 

  • Rather, R. A., Bano, H., Padder, S. A., Baba, T. R., Ara, S., Lone, F. A., & Nazir, S. (2022). Impact of anthropogenic pressure on physico-chemical characteristics of forest soils of Kashmir Himalaya. Bulletin of Environmental Contamination and Toxicology, 108(6), 1088–1097.

    Article  CAS  Google Scholar 

  • Rawat, K. S., Sahu, S. R., Singh, S. K., & Mishra, A. K. (2022). Cloudburst analysis in the Nainital district, Himalayan Region, 2021. Discover Water, 2(1), 12.

    Article  Google Scholar 

  • Reiner, R. C., Wiens, K. E., Deshpande, A., Baumann, M. M., Lindstedt, P. A., Blacker, B. F., Troeger, C. E., Earl, L., Munro, S. B., & Abate, D. (2020). Mapping geographical inequalities in childhood diarrhoeal morbidity and mortality in low-income and middle-income countries, 2000–17: Analysis for the Global Burden of Disease Study 2017. The Lancet, 395(10239), 1779–1801.

    Article  Google Scholar 

  • Ren, Y. Y., Ren, G. Y., Sun, X. B., Shrestha, A. B., You, Q. L., Zhan, Y. J., Rajbhandari, R., Zhang, P. F. & Wen, K. M. (2017). Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan region over the last 100-plus years. Advances in Climate Change Research, 8(3), 148–156

    Google Scholar 

  • Romeo, R., Russo, L., Parisi, F., Notarianni, M., Manuelli, S., & CarvaoUNWTO, S. (2021). Mountain tourism—Towards a more sustainable path. FAO. https://doi.org/10.4060/cb7884en

    Article  Google Scholar 

  • Romshoo, S. A., Murtaza, K. O., Shah, W., Ramzan, T., Ameen, U., & Bhat, M. H. (2022). Anthropogenic climate change drives melting of glaciers in the Himalaya. Environmental Science and Pollution Research, 29(35), 52732–52751.

    Article  Google Scholar 

  • Sabin, T. P., Krishnan, R., Vellore, R., Priya, P., Borgaonkar, H. P., Singh, B. B., & Sagar, A. (2020). Climate change over the Himalayas. Assessment of climate change over the Indian region: A report of the Ministry of Earth Sciences (MoES), Government of India, 207–222.

    Google Scholar 

  • Salunke, P., Keshri, N. P., Mishra, S. K., & Dash, S. K. (2023). Future projections of seasonal temperature and precipitation for India. Frontiers in Climate, 5, 1069994.

    Article  Google Scholar 

  • Sanjay, J., et al. (2017b). Downscaled climate change projections for the Hindu Kush Himalayan region using CORDEX South Asia regional climate models. Adv. Clim. Change Res., 8(3), 185–198. https://doi.org/10.1016/j.accre.2017.08.003

    Article  Google Scholar 

  • Sanjay, J., Krishnan, R., Shrestha, A. B., Rajbhandari, R., Ren, G.Y. (2017). Downscaled climate change projections for the Hindu Kush Himalayan region using CORDEX South Asia regional climate models. Adv Clim Change Res 8(3):185–198. https://doi.org/10.1016/j.accre.2017.08.003.

  • Sati, V. P., & Kumar, S. (2022). Environmental and economic impact of cloudburst-triggered debris flows and flash floods in Uttarakhand Himalaya: A case study. Geoenvironmental Disasters, 9(1), 5.

    Article  Google Scholar 

  • Scott, C. A., Zhang, F., Mukherji, A., Immerzeel, W., Mustafa, D., & Bharati, L. (2019). Water in The Hindu kush himalaya. The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People, 257–299.

    Google Scholar 

  • Shafiq, M. U., Ramzan, S., Ahmed, P., Mahmood, R., & Dimri, A. P. (2019a). Assessment of present and future climate change over Kashmir Himalayas, India. Theoretical and Applied Climatology, 137, 3183–3195.

    Article  Google Scholar 

  • Shafiq, M. U., Rasool, R., Ahmed, P., & Dimri, A. P. (2019b). Temperature and precipitation trends in Kashmir Valley, north western Himalayas. Theoretical and Applied Climatology, 135, 293–304.

    Article  Google Scholar 

  • Shah, S., & Tewari, A. (2016). Limited impact of climate change on seed maturation time in Myrica esculenta Buch-Ham. Ex. D. Don in Himalayan region. International Journal of Environment, Agriculture and Biotechnology, 1(4), 713–717. https://doi.org/10.22161/ijeab/1.4.13

  • Sharma, A., & Goyal, M. K. (2020). Assessment of the changes in precipitation and temperature in Teesta River basin in Indian Himalayan Region under climate change. Atmospheric Research, 231, 104670.

    Article  Google Scholar 

  • Sharma, M. L., Douglas, J., Bungum, H., & Kotadia, J. (2009b). Ground-motion prediction equations based on data from the Himalayan and Zagros regions. Journal of Earthquake Engineering, 13(8), 1191–1210.

    Article  Google Scholar 

  • Sharma, G., et al. (2020a). Water management systems of two towns in the Eastern Himalaya: Case studies of Singtam in Sikkim and Kalimpong in West Bengal states of India. Water Policy, 22, 107–129. https://doi.org/10.2166/wp.2019.229

    Article  Google Scholar 

  • Sharma, G., Namchu, C., Nyima, K., Luitel, M., Singh, S., & Goodrich, C. G. (2020b). Water management systems of two towns in the Eastern Himalaya: Case studies of Singtam in Sikkim and Kalimpong in West Bengal states of India. Water Policy, 22(S1), 107–129.

    Article  Google Scholar 

  • Sharma, H. R., & Chauhan, S. K. (2013). Agricultural transformation in Trans Himalayan region of Himachal Pradesh: cropping pattern, technology adoption and emerging challenges. Agricultural Economics Research Review, 26(347–2016–17110), 173–179.

    Google Scholar 

  • Sharma, S., Bajracharya, R. M., Sitaula, B. K., & Merz, J. (2005). Water Quality in the Central Himalaya. Current Science, 774–786.

    Google Scholar 

  • Sharma, G., Liang, L., Sharma, E., & Subba, J. R. (2009). Sikkim Himalayan-agriculture: Improving and scaling up of the traditionally managed agricultural systems of global significance.

    Google Scholar 

  • Sharma, E., Molden, D., Rahman, A., Khatiwada, Y. R., Zhang, L., Singh, S. P., ... & Wester, P. (2019). Introduction to the hindu kush himalaya assessment. The Hindu Kush Himalaya Assessment: mountains, climate change, sustainability and people, 1–16.

    Google Scholar 

  • Shrestha, A. B., & Aryal, R. (2011). Climate change in Nepal and its impact on Himalayan glaciers. Regional Environmental Change, 11, S65–S77.

    Article  Google Scholar 

  • Shrestha, U. B., & Shrestha, B. B. (2019). Climate change amplifies plant invasion hotspots in Nepal. Diversity and Distributions, 25(10), 1599–1612.

    Article  Google Scholar 

  • Shrestha, K. B., Chhetri, P. K., & Bista, R. (2017). Growth responses of Abies spectabilis to climate variations along an elevational gradient in Langtang National Park in the central Himalaya. Nepal. Journal of Forest Research, 22(5), 274–281.

    Google Scholar 

  • Shrestha, A. B., Agrawal, N. K., Alfthan, B., Bajracharya, S. R., Maréchal, J., & Van Oort, B. (2015). The Himalayan climate and water atlas: impact of climate change on water resources in five of Asia’s major river basins. GRID-Arendal and CICERO, ICIMOD.

    Google Scholar 

  • Shukla, A., Garg, P. K., & Srivastava, S. (2018). Evolution of glacial and high-altitude lakes in the Sikkim, Eastern Himalaya over the past four decades (1975–2017). Frontiers in Environmental Science, 6, 81.

    Article  Google Scholar 

  • Sigdel, K. P., Ghimire, N. P., Pandeya, B., & Dawadi, B. (2022). Historical and projected variations of precipitation and temperature and their extremes in relation to climatic indices over the Gandaki River Basin. Central Himalaya. Atmosphere, 13(11), 1866.

    Google Scholar 

  • Singh, S., Ghosh, S., Sahana, A. S., Vittal, H., & Karmakar, S. (2017a). Do dynamic regional models add value to the global model projections of Indian monsoon? Climate Dynamics, 48(3–4), 1375–1397. https://doi.org/10.1007/s00382-016-3147-y

    Article  Google Scholar 

  • Singh, R. K., Zander, K. K., Kumar, S., Singh, A., Sheoran, P., Kumar, A., Hussain, S. M., Riba, T., Rallen, O., Lego, Y.J., & Padung, E. (2017). Perceptions of climate variability and livelihood adaptations relating to gender and wealth among the Adi community of the Eastern Indian Himalayas. Applied Geography, 86, 41–52.

    Google Scholar 

  • Singh, D.S., Dubey, C.A., Kumar, D., Vishawakarma, B., Singh, A.K., Tripathi, A., Gautam, P.K., Bali, R., Agarwal, K.K., & Sharma, R. (2019). Monsoon variability and major climatic events between 25 and 0.05 ka BP using sedimentary parameters in the Gangotri Glacier region, Garhwal Himalaya, India. Quaternary International, 507, 148–155.

    Google Scholar 

  • Singhal, A., & Jha, S. K. (2022). An application of Multiple-point statistics downscaling approach over North-West Himalayas in avalanche-prone areas. International Journal of Climatology, 42(3), 1902–1921.

    Article  Google Scholar 

  • IPCC SR (2019) IPCC SR ocean and cryosphere in a changing climate, Chap 2. In: Hock R et al (eds.) High mountain areas.

    Google Scholar 

  • Srivastava, P., & Misra, D. K. (2012). Optically stimulated luminescence chronology of terrace sediments of Siang River, Higher NE Himalaya: Comparison of Quartz and Feldspar chronometers. Journal of the Geological Society of India, 79, 252–258.

    Article  CAS  Google Scholar 

  • Srivastava, N. (2022). influence of global warming on Himalayan region of India: a review. Plant Archives (09725210), 22(1).

    Google Scholar 

  • Stäubli, A., Nussbaumer, S. U., Allen, S. K., Huggel, C., Arguello, M., Costa, F., ... & Zimmermann, M. (2018). Analysis of weather-and climate-related disasters in mountain regions using different disaster databases. Climate Change, Extreme Events and Disaster Risk Reduction: Towards Sustainable Development Goals, 17–41.

    Google Scholar 

  • Steiger, R., Knowles, N., Pöll, K., & Rutty, M. (2022). Impacts of climate change on mountain tourism: A review. Journal of Sustainable Tourism, 1–34.

    Google Scholar 

  • Sujakhu, N. M., Ranjitkar, S., Niraula, R. R., Pokharel, B. K., Schmidt-Vogt, D., & Xu, J. (2016). Farmers’ perceptions of and adaptations to changing climate in the Melamchi valley of Nepal. Mountain Research and Development, 36(1), 15–30.

    Article  Google Scholar 

  • Sun, X.B., Ren, G.Y., Shrestha, A.B., Ren, Y.Y., You, Q.L., Zhan, Y.J., Xu, Y., & Rajbhandari, R. (2017). Changes in extreme temperature events over the Hindu Kush Himalaya during 1961–2015. Advances in Climate Change Research, 8(3), 157–165.

    Google Scholar 

  • Suwal, M. K., et al. (2016). Land-use change under a warming climate facilitated upslope expansion of Himalayan silver fir (Abies spectabilis (D. Don) Spach). Plant Ecology, 217, 993–1002. https://doi.org/10.1007/s11258-016-0624-7

    Article  Google Scholar 

  • Tariq, M. A. U. R., Wangchuk, K., & Muttil, N. (2021). A critical review of water resources and their management in Bhutan. Hydrology, 8(1), 31.

    Article  Google Scholar 

  • Thapa, S., Chitale, V., Rijal, S. J., Bisht, N., & Shrestha, B. B. (2018). Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya. PLoS ONE, 13(4), e0195752.

    Article  Google Scholar 

  • Thet, A. P. P., & Tokuchi, N. (2021). The Influences of Traditional Shifting Cultivation on Soil Properties and Vegetation in the Bago Mountains. Myanmar. Human Ecology, 49(5), 655–664.

    Article  Google Scholar 

  • Tshering, K., Dema, K., Tshering, D., Dorji, P., & Officer, F. (2012). Assessment of forest ecosystem services in Khaling Gewog, Bhutan. Journal of Agroforestry and Environment, 6, 41–44.

    Google Scholar 

  • Turner, A. G., & Annamalai, H. (2012). Climate change and the South Asian summer monsoon. Nature Climate Change, 2(8), 587–595.

    Article  Google Scholar 

  • Tyagi, A., Tiwari, R. K., & James, N. (2023). Mapping the landslide susceptibility considering future land-use land-cover scenario. Landslides, 20(1), 65–76.

    Article  Google Scholar 

  • Tyagi, N., Jayal, T., Singh, M., Mandwal, V., Saini, A., Nirbhav Sahu, N., Nayak, S. (2022). Evaluation of observed and future climate change projection for Uttarakhand, India, Using CORDEX-SA. Atmosphere 2022, 13, 947. https://doi.org/10.3390/atmos13060947

  • Upgupta, S., Sharma, J., Jayaraman, M., Kumar, V., & Ravindranath, N. H. (2015). Climate change impact and vulnerability assessment of forests in the Indian Western Himalayan region: A case study of Himachal Pradesh, India. Climate Risk Management, 10, 63–76.

    Article  Google Scholar 

  • Uprety, Y., Shrestha, U.B., Rokaya, M.B., Shrestha, S., Chaudhary, R.P., Thakali, A., Cockfield, G., & Asselin, H. (2017). Perceptions of climate change by highland communities in the Nepal Himalaya. Climate and Development, 9(7), 649–661

    Google Scholar 

  • Vaidya, R. A., Shrestha, M. S., Nasab, N., Gurung, D. R., Kozo, N., Pradhan, N. S., & Wasson, R. J. (2019). Disaster risk reduction and building resilience in the Hindu Kush Himalaya. The Hindu Kush Himalaya assessment: Mountains, Climate Change, Sustainability and People, 389–419.

    Google Scholar 

  • Valipour, M., Banihabib, M. E., & Behbahani, S. M. R. (2013). Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. Journal of Hydrology, 476, 433–441.

    Article  Google Scholar 

  • Wang, J. G., Hu, X. M., Wu, F. Y., & Jansa, L. (2010). Provenance of the Liuqu Conglomerate in southern Tibet: A Paleogene erosional record of the Himalayan-Tibetan orogen. Sedimentary Geology, 231(3–4), 74–84.

    Article  CAS  Google Scholar 

  • Wangdi, K., & Clements, A. C. A. (2017). Spatial and temporal patterns of diarrhoea in Bhutan 2003–2013. BMC Infectious Diseases, 17(1), 1–9.

    Article  Google Scholar 

  • Wohl, E., Barros, A., Brunsell, N., Chappell, N. A., Coe, M., Giambelluca, T., Goldsmith, S., Harmon, R., Hendrickx, J. M., Juvik, J., & McDonnell, J. (2012). The hydrology of the humid tropics. Nature Climate Change, 2(9), 655–662.

    Google Scholar 

  • Yaseen, T., Bhat, S. U., & Bhat, F. A. (2022). Study of vertical distribution dynamics of zooplankton in a thermally stratified warm monomictic lake of Kashmir Himalaya. Ecohydrology, 15(2), e2389.

    Article  Google Scholar 

  • ou, Q. L., Ren, G. Y., Zhang, Y. Q., Ren, Y. Y., Sun, X. B., Zhan, Y. J., Shrestha, A. B., & Krishnan, R. (2017). An overview of studies of observed climate change in the Hindu Kush Himalayan (HKH) region. Advances in Climate Change Research, 8(3), 141-147

    Google Scholar 

  • Zalaki-Badil, N., Eslamian, S., Sayyad, G. A., Hosseini, S. E., Asadilour, M., Ostad-Ali-Askari, K., Singh, V. P., & Dehghan, S. (2017). Using SWAT model to determine runoff, sediment yield in maroon-dam catchment. International Journal of Research Studies in Agricultural Sciences, 3(12), 31–41.

    Google Scholar 

  • Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S.U., Gärtner-Roer, I., & Thomson, L. (2019). Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568(7752), 382–386.

    Google Scholar 

  • Zhang, R., Wang, H., Qian, Y., Rasch, P. J., Easter, R. C., Ma, P. L., Singh, B., Huang, J., & Fu, Q., (2015). Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau. Atmospheric Chemistry and Physics, 15(11), 6205–6223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Periyasamy Dhevagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poornima, R. et al. (2024). Climate Change Implications in the Himalayas. In: Borthakur, A., Singh, P. (eds) The Himalayas in the Anthropocene. Springer, Cham. https://doi.org/10.1007/978-3-031-50101-2_11

Download citation

Publish with us

Policies and ethics