Skip to main content

A Novel Method for Surface Mesh Smoothing: Applications in Biomedical Modeling

  • Conference paper
Proceedings of the 18th International Meshing Roundtable

Abstract

In this paper, we present a surface-fitting based smoothing algorithm for discrete, general-purpose mesh models. The surface patch around a mesh vertex is defined in a local coordinate system and fitted with a quadratic polynomial function. An initial mesh smoothing is achieved by projecting each vertex onto the fitted surface. At each vertex of the initial mesh, the curvature is estimated and used to label the vertex as one of four types. The curvature-based vertex labeling, together with the curvature variation within a local region of a vertex, is utilized to adaptively smooth the mesh with fine features well preserved. Finally, three post-processing methods are adopted for mesh quality improvement. A number of realworld mesh models are tested to demonstrate the effectiveness and robustness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Field, D.A.: Laplacian smoothing and Delaunay triangulations. Communications in Applied Numerical Methods 4, 709–712 (1988)

    Article  MATH  Google Scholar 

  2. Taubin, G.: A Signal Processing Approach to Fair Surface Design. In: Proceedings of SIGGRAPH 1995, pp. 351–358 (1995)

    Google Scholar 

  3. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow. In: Proceedings of SIGGRAPH 1999, pp. 317–324 (1999)

    Google Scholar 

  4. Vollmer, J., Mencl, R., Müller, H.: Improved Laplacian smoothing of noisy surface meshes. In: Proceedings of Eurographics, pp. 131–138 (1999)

    Google Scholar 

  5. Ohtake, Y., Belyaev, A., Bogaeski, I.: Polyhedral Surface Smoothing with Simultaneous Mesh Regularization. In: Geometric Modeling and Processing, pp. 229–237 (2000)

    Google Scholar 

  6. Peng, J., Strela, V., Zorin, D.: A Simple Algorithm for Surface Denoising. In: Proceedings of IEEE Visualization 2001, pp. 107–112 (2001)

    Google Scholar 

  7. Kobbelt, L.: Discrete fairing. In: Proceedings of the 7th IMA Conference on the Mathematics of Surfaces, pp. 101–131. Springer, Cirencester (1996)

    Google Scholar 

  8. Kobbelt, L., Botsch, M., Schwanecke, U., Seidel, H.: Feature sensitive surface extraction from volume data. In: Proceedings of SIGGRAPH 2001 (2001)

    Google Scholar 

  9. Welch, W., Witkin, A.: Free-form shape design using triangulated surfaces. In: Proceedings of SIGGRAPH 1994, pp. 247–256. ACM Press, Orlando (1994)

    Chapter  Google Scholar 

  10. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Anisotropic Feature-Preserving Denoising of Height Fields and Bivariate Data. In: Graphics Interface, pp. 145–152 (2000)

    Google Scholar 

  11. Taubin, G.: Linear anisotropic mesh filtering. IBM Research Technical Report. RC2213 (2001)

    Google Scholar 

  12. Liu, X., Bao, H., Heng, P., Wong, T., Peng, Q.: Constrained fairing for meshes. Computer Graphics Forum 20(2), 115–123 (2001)

    Article  MATH  Google Scholar 

  13. Liu, X., Bao, H., Shum, H., Peng, Q.: A novel volume constrained smoothing method for meshes. Graphical Models 64, 169–182 (2002)

    Article  MATH  Google Scholar 

  14. Tasdizen, T., Whitaker, R., Burchard, P., Osher, S.: Geometric surface smoothing via anisotropic diffusion of normals. In: Proceedings of IEEE Visualization, pp. 125–132 (2002)

    Google Scholar 

  15. Ohtake, Y., Belyaev, A., Seidel, H.-P.: Mesh Smoothing by Adaptive and Anisotropic Gaussian Filter. In: Vision, Modeling and Visualization, pp. 203–210 (2002)

    Google Scholar 

  16. Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral Mesh Denoising. ACM Trans. Gr. (2003)

    Google Scholar 

  17. Zhang, H., Fiume, E.L.: Mesh Smoothing with Shape or Feature Preservation. In: Advances in Modeling, Animation, and Rendering, pp. 167–182 (2002)

    Google Scholar 

  18. Clarenz, U., Diewald, U., Rumpf, M.: Anisotropic geometric diffusion in surface processing. In: IEEE Visualization 2000, pp. 397–405 (2000)

    Google Scholar 

  19. Bajaj, C., Xu, G.: Anisotropic Diffusion on Surfaces and Functions on Surfaces. ACM Trans. Gr. 22(1), 4–32 (2003)

    Article  Google Scholar 

  20. Jones, T., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. In: Proceedings of SIGGRAPH 2003, pp. 943–949. ACM Press, San Diego (2003)

    Chapter  Google Scholar 

  21. Li, Z., Ma, L., Jin, X., Zheng, Z.: A new feature-preserving mesh-smoothing algorithm. Visual Comput. 25, 139–148 (2009)

    Article  Google Scholar 

  22. Frey, P.J.: About surface remeshing. In: Proc. in 9th IMR, New-Orleans, pp. 123–136 (2000)

    Google Scholar 

  23. Milroy, M.J., Bradley, C., Vickers, G.W.: Segmentation of a wrap-around model using an active contour. Computer Aided Designed 29(4), 299–320 (1997)

    Article  Google Scholar 

  24. Atkinson, K.A.: An Introduction to Numerical Analysis, 2nd edn. John Wiley & Sons, New York (1989)

    MATH  Google Scholar 

  25. Besl, P.J., Jain, R.: Segmentation through Variable-Order Surface Fitting. In: IEEE PAMI 1988, vol. 10(2), pp. 167–192 (1988)

    Google Scholar 

  26. Zhou, T., Shimada, K.: An angle-based approach to two-dimensional mesh smoothing. In: Proc. in 9th IMR, New-Orleans, pp. 373–384 (2000)

    Google Scholar 

  27. Yu, Z.: A list-based method for fast generation of molecular surfaces. In: The 31st International Conference of IEEE Engineering in Medicine and Biology Society (accepted, 2009)

    Google Scholar 

  28. Yu, Z., Holst, M., Cheng, Y., McCammon, J.A.: Feature-Preserving Adaptive Mesh Generation for Molecular Shape Modeling and Simulation. Journal of Molecular Graphics and Modeling 26(8), 1370–1380 (2008)

    Article  Google Scholar 

  29. Yu, Z., Bajaj, C.L.: Computational approaches for automatic structural analysis of large bio-molecular complexes. IEEE/ACM Transactions on Computational Biology and Bioinformatics 5(4), 568–582 (2008)

    Article  Google Scholar 

  30. Yu, Z., Holst, M., Hayashi, T., Bajaj, C.L., Ellisman, M.H., McCammon, J.A., Hoshijima, M.: Three-dimensional geometric modeling of membrane-bound organelles in ventricular myocytes: Bridging the gap between microscopic imaging and mathematical simulation. Journal of Structural Biology 164(3), 304–313 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, J., Yu, Z. (2009). A Novel Method for Surface Mesh Smoothing: Applications in Biomedical Modeling. In: Clark, B.W. (eds) Proceedings of the 18th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04319-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04319-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04318-5

  • Online ISBN: 978-3-642-04319-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics