Skip to main content

The Significance of Classical Simulations in the Adoption of Quantum Technologies for Software Development

  • Conference paper
  • First Online:
Product-Focused Software Process Improvement (PROFES 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14484))

  • 227 Accesses

Abstract

This paper addresses classical simulations in the assessment of quantum computing performance. It emphasises the significance of these simulations in understanding quantum systems and exploring the potential of quantum algorithms. The challenges posed by the exponential growth of quantum states and the limitations of full-state simulations are addressed. Various approximation techniques and encoding methods are pointed out to enable simulations of larger quantum systems, and advanced simulation strategies tailored to specific goals are also discussed. This work focuses on the feasibility of classical simulation in decision processes regarding the development of software solutions, extending the assessment beyond high-performance computing systems to include standard hardware. This opportunity can foster the adoption of classical simulations of quantum algorithms to a wider range of users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A 70(5), 052328 (2004)

    Article  Google Scholar 

  2. Albash, T., Lidar, D.A.: Adiabatic quantum computation. Rev. Mod. Phys. 90(1), 015002 (2018)

    Article  MathSciNet  Google Scholar 

  3. Angelelli, M., Arima, S., Catalano, C., Ciavolino, E.: Cyber-risk perception and prioritization for decision-making and threat intelligence. arXiv preprint arXiv:2302.08348 (2023)

  4. Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

    Article  Google Scholar 

  5. Barletta, V.S., Caivano, D., De Vincentiis, M., Magrì, A., Piccinno, A.: Quantum optimization for IoT security detection. In: Julián, V., Carneiro, J., Alonso, R.S., Chamoso, P., Novais, P. (eds.) ISAmI 2022. LNNS, vol. 603, pp. 187–196. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-22356-3_18

    Chapter  Google Scholar 

  6. Barletta, V.S., Caivano, D., Gigante, D., Ragone, A.: A rapid review of responsible AI frameworks: how to guide the development of ethical AI. In: Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering, EASE 2023, pp. 358–367. Association for Computing Machinery, New York (2023). https://doi.org/10.1145/3593434.3593478

  7. Bartlett, S.D., Sanders, B.C.: Efficient classical simulation of optical quantum information circuits. Phys. Rev. Lett. 89(20), 207903 (2002)

    Article  Google Scholar 

  8. Bertels, K., et al.: Quantum computer architecture: towards full-stack quantum accelerators. 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1–6 (2019)

    Google Scholar 

  9. Boixo, S., et al.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14(6), 595–600 (2018)

    Article  Google Scholar 

  10. Bourassa, J.E., et al.: Blueprint for a scalable photonic fault-tolerant quantum computer. Quantum 5, 392 (2021)

    Article  Google Scholar 

  11. Bravyi, S., Smith, G., Smolin, J.A.: Trading classical and quantum computational resources. Phys. Rev. X 6(2), 021043 (2016)

    Google Scholar 

  12. Burgholzer, L., Ploier, A., Wille, R.: Simulation paths for quantum circuit simulation with decision diagrams what to learn from tensor networks, and what not. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 42(4), 1113–1122 (2022)

    Article  Google Scholar 

  13. Callison, A., Chancellor, N.: Hybrid quantum-classical algorithms in the noisy intermediate-scale quantum era and beyond. Phys. Rev. A 106(1), 010101 (2022)

    Article  MathSciNet  Google Scholar 

  14. Cartaxo, B., Pinto, G., Soares, S.: Rapid reviews in software engineering. In: Felderer, M., Travassos, G. (eds.) Contemporary Empirical Methods in Software Engineering, pp. 357–384. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32489-6_13

    Chapter  Google Scholar 

  15. Castillo, J.E., Sierra, Y., Cubillos, N.L.: Classical simulation of Grovers quantum algorithm. Rev. Brasil. Ensino Fisica 42, e20190115 (2020)

    Google Scholar 

  16. Catalano, C., Chezzi, A., Angelelli, M., Tommasi, F.: Deceiving AI-based malware detection through polymorphic attacks. Comput. Ind. 143, 103751 (2022)

    Article  Google Scholar 

  17. Catalano, C., Afrune, P., Angelelli, M., Maglio, G., Striani, F., Tommasi, F.: Security testing reuse enhancing active cyber defence in public administration. In: ITASEC, pp. 120–132 (2021)

    Google Scholar 

  18. Chen, Y.T., Farquhar, C., Parrish, R.M.: Low-rank density-matrix evolution for noisy quantum circuits. NPJ Quant. Inf. 7(1), 61 (2021)

    Article  Google Scholar 

  19. De Raedt, K., et al.: Massively parallel quantum computer simulator. Comput. Phys. Commun. 176(2), 121–136 (2007)

    Article  MATH  Google Scholar 

  20. Díaz-Pier, S., Venegas-Andraca, S.E.: Classical simulation of quantum adiabatic algorithms using mathematica on GPUs. Int. J. Unconv. Comput. 7, 315–330 (2011)

    Google Scholar 

  21. Gao, X., Duan, L.: Efficient classical simulation of noisy quantum computation. arXiv preprint arXiv:1810.03176 (2018)

  22. Gray, J., Kourtis, S.: Hyper-optimized tensor network contraction. Quantum 5, 410 (2021)

    Article  Google Scholar 

  23. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse ising model. Phys. Rev. E 58(5), 5355 (1998)

    Article  Google Scholar 

  24. Kyaw, T.H., et al.: Quantum computer-aided design: digital quantum simulation of quantum processors. Phys. Rev. Appl. 16(4), 044042 (2021)

    Article  Google Scholar 

  25. Li, G., Ding, Y., Xie, Y.: Eliminating redundant computation in noisy quantum computing simulation. In: 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2020)

    Google Scholar 

  26. Markov, I.L., Shi, Y.: Simulating quantum computation by contracting tensor networks. SIAM J. Comput. 38(3), 963–981 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Miranskyy, A.V., Khan, M., Faye, J.P.L., Mendes, U.C.: Quantum computing for software engineering: prospects. In: Proceedings of the 1st International Workshop on Quantum Programming for Software Engineering (2022)

    Google Scholar 

  28. Pan, F., Zhang, P.: Simulation of quantum circuits using the big-batch tensor network method. Phys. Rev. Lett. 128(3), 030501 (2022)

    Article  Google Scholar 

  29. Schutski, R., Khakhulin, T., Oseledets, I., Kolmakov, D.: Simple heuristics for efficient parallel tensor contraction and quantum circuit simulation. Phys. Rev. A 102(6), 062614 (2020)

    Article  MathSciNet  Google Scholar 

  30. Steijl, R.: Quantum algorithms for fluid simulations. Adv. Quant. Commun. Inf. (2019)

    Google Scholar 

  31. Van Den Nes, M.: Classical simulation of quantum computation, the Gottesman-Knill theorem, and slightly beyond. Quantum Inf. Comput. 10(3), 258–271 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Graph-based simulation of quantum computation in the density matrix representation. In: Quantum Information and Computation II, vol. 5436, pp. 285–296. SPIE (2004)

    Google Scholar 

  33. Villalonga, B., et al.: A flexible high-performance simulator for verifying and benchmarking quantum circuits implemented on real hardware. NPJ Quant. Inf. 5(1), 86 (2019)

    Article  Google Scholar 

  34. Zhang, M., Wang, C., Han, Y.: Noisy random quantum circuit sampling and its classical simulation. Adv. Quant. Technol. 2300030 (2023)

    Google Scholar 

  35. Zhong, H.S., et al.: Quantum computational advantage using photons. Science 370(6523), 1460–1463 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

Andrea D’Urbano acknowledges the funding received by Deep Consulting s.r.l. within the Ph.D. program in Engineering of Complex Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea D’Urbano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D’Urbano, A., Angelelli, M., Catalano, C. (2024). The Significance of Classical Simulations in the Adoption of Quantum Technologies for Software Development. In: Kadgien, R., Jedlitschka, A., Janes, A., Lenarduzzi, V., Li, X. (eds) Product-Focused Software Process Improvement. PROFES 2023. Lecture Notes in Computer Science, vol 14484. Springer, Cham. https://doi.org/10.1007/978-3-031-49269-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49269-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49268-6

  • Online ISBN: 978-3-031-49269-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics