Skip to main content

Overview of Some Production Routes for Hydroxyapatite and Its Applications

  • Chapter
  • First Online:
Advances in Minerals Research

Abstract

It is well-known that bone is one of the most commonly replaced organs worldwide after a blood transfusion and therefore, the development of different strategies is necessary for treating bone defects. Based on this concept, bone surgical problems have been solved. Thanks to biomaterials, which involve calcium phosphates/silicates, porous metals, bioactive glasses, glass–ceramics, and synthetic polymers. Notably, hydroxyapatite (HA) is one of the calcium phosphate family, which possesses marvelous ability to integrate with hard tissues without triggering foreign body reactions and consequently, save patients from the possible undesirable complications. It is meaningful to mention that in spite of the attractive applications of HA in medicine, it has other important applications in many fields like agriculture, chemistry, and the environment. This chapter briefly discusses the different bone grafting materials, and their defects, 3D bioprinting of scaffolds, the definition and types of biomaterials, host responses to biomaterials, different methods for producing HA, and the different properties and applications of HA. Noteworthy, one can say that the preparation of HA with certain characteristics is very complicated due to the potential production of toxic intermediary phases that may occur during the synthesis process. Meanwhile, further investigations and descriptions of the HA structure and fictionalization could be achieved with molecular modeling at different levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia, F. Han, B. Li, W. Shu, 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 3, 278–314 (2018). https://doi.org/10.1016/j.bioactmat.2017.10.001

    Article  Google Scholar 

  2. B. Dhandayuthapani, Y. Yoshida, T. Maekawa, D.S. Kumar, Polymeric scaffolds in tissue engineering application: a review. Int. J. Polym. Sci. 2011, 1–19 (2011). https://doi.org/10.1155/2011/290602

    Article  Google Scholar 

  3. E. García-Gareta, M.J. Coathup, G.W. Blunn, Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 81, 112–121 (2015). https://doi.org/10.1016/j.bone.2015.07.007

    Article  CAS  Google Scholar 

  4. S.V. Murphy, A. Atala, 3D bioprinting of tissues and organs. Nat. Biotechnol. 32(8), 773–785 (2014). https://doi.org/10.1038/nbt.2958

  5. A. Shafiee, A. Atala, Printing technologies for medical applications. Trends Mol. Med. 22(3), 254–265 (2016). https://doi.org/10.1016/j.molmed.2016.01.003

    Article  Google Scholar 

  6. J. Lu, C. Yan, 3D printing of scaffolds for tissue engineering. IntechOpen (2018)

    Google Scholar 

  7. J. Cui et al., Polydopamine-functionalized polymer particles as templates for mineralization of hydroxyapatite: biomimetic and in vitro bioactivity. RSC Adv. 6(8), 6747–6755 (2016). https://doi.org/10.1039/C5RA24821C

  8. R.E. Saunders, B. Derby, Inkjet printing biomaterials for tissue engineering: bioprinting. Int. Mater. Rev. 59(8), 430–448 (2014). https://doi.org/10.1179/1743280414Y.0000000040

    Article  CAS  Google Scholar 

  9. S. Bose, S. Vahabzadeh, A. Bandyopadhyay, Bone tissue engineering using 3D printing. Mater. Today 16(12), 496–504 (2013). https://doi.org/10.1016/j.mattod.2013.11.017

    Article  CAS  Google Scholar 

  10. V. Keriquel et al., In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci. Rep. 7(1), 1778 (2017). https://doi.org/10.1038/s41598-017-01914-x

    Article  CAS  Google Scholar 

  11. L. Koch, M. Gruene, C. Unger, B. Chichkov, Laser assisted cell printing. Curr. Pharm. Biotechnol. 14(1), 91–97 (2013). https://doi.org/10.2174/138920113804805368

    Article  CAS  Google Scholar 

  12. Y. Yu et al., Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. Sci. Rep. 6, 28714 (2016). https://doi.org/10.1038/srep28714

    Article  CAS  Google Scholar 

  13. J. Zhang, W. Liu, V. Schnitzler, F. Tancret, J.M. Bouler, Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomater. 10, 1035–1049 (2014). https://doi.org/10.1016/j.actbio.2013.11.001

    Article  CAS  Google Scholar 

  14. M. Catauro, F. Bollino, Advanced glass-ceramic materials for biomedical applications. J. Bone Rep. Recommend. 3, 1–3 (2017). https://doi.org/10.4172/2469-6684.100035

    Article  Google Scholar 

  15. R.A. Youness, M.A. Taha, A.A. El-Kheshen, N. El-Faramawy, M. Ibrahim, In vitro bioactivity evaluation, antimicrobial behavior and mechanical properties of cerium-containing phosphate glasses. Mater. Res. Expr. 6, 1–13 (2019). https://doi.org/10.4172/2469-6684.100035

    Article  Google Scholar 

  16. E.M.A. Khalil, R.A. Youness, M.S. Amer, M.A. Taha, Mechanical properties, in vitro and in vivo bioactivity assessment of Na2O-CaO-P2O5-B2O3-SiO2 glass-ceramics. Ceram. Int. 44, 7867–7876 (2018). https://doi.org/10.1016/j.ceramint.2018.01.222

    Article  CAS  Google Scholar 

  17. R.A. Youness, M.A. Taha, M. Ibrahim, A. El-Kheshen, FTIR spectral characterization, mechanical properties and antimicrobial properties of La-doped phosphate-based bioactive glasses. Silicon 10, 1151–1159 (2018). https://doi.org/10.1007/s12633-017-9587-0

    Article  CAS  Google Scholar 

  18. S.M. Abo-Naf, E.M. Khalil, E.M. El-Sayed, H.A. Zayed, R.A. Youness, In vitro bioactivity evaluation, mechanical properties and microstructural characterization of Na2O-CaO-B2O3-P2O5 glasses. Spectrochim. Acta A 144, 88–98 (2015). https://doi.org/10.1016/j.saa.2015.02.076

    Article  CAS  Google Scholar 

  19. M.A. Taha, R.A. Youness, M.F. Zawrah, Phase composition, sinterability and bioactivity of amorphous nano-CaO-SiO2-CuO powder synthesized by sol-gel technique. Ceram. Int. 46, 24462–24471 (2020). https://doi.org/10.1016/j.ceramint.2020.06.231

    Article  CAS  Google Scholar 

  20. W.S. AbuShanab, E.B. Moustafa, M.A. Taha, R.A. Youness, Synthesis and structural properties characterization of titnia/zirconia/calcium silicate nanocomposites for biomedical applications. Appl. Phys. A 126, 1–12 (2020). https://doi.org/10.1007/s00339-020-03975-8

    Article  CAS  Google Scholar 

  21. G. Kaur, G. Pickrell, G. Kimsawatde, D. Homa, H.A. Allbee, N. Sriranganathan, Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses. Sci. Rep. 4, 1–14 (2013). https://doi.org/10.1038/srep04392

    Article  CAS  Google Scholar 

  22. R. Ravarian, F. Moztarzadeh, M.S. Hashjin, S.M. Rabiee, P. Khoshakhlagh, M. Tahriri, Synthesis, characterization and bioactivity investigation of bioglass/hydroxyapatite composite. Ceram. Int. 36, 291–297 (2010). https://doi.org/10.1016/j.ceramint.2009.09.016

    Article  CAS  Google Scholar 

  23. K. Labgairi, A. Borji, M. Kaddami, A. Jourani, Kinetic study of calcium phosphate precipitation in the system H3PO4–Ca(OH)2–H2O at 30°C. Int. J. Chem. Eng. 2020, 1–9 (2020). https://doi.org/10.1155/2020/2893298

    Article  CAS  Google Scholar 

  24. E. Mariani, G. Lisignoli, R.M. Borzì, L. Pulsatelli, Biomaterials: foreign bodies or tuners for the immune response? Int. J. Mol. Sci. 20, 1–42 (2019). https://doi.org/10.3390/ijms20030636

    Article  CAS  Google Scholar 

  25. R.M. Berne, M.N. Levy, B.M. Koeppen, B.A. Stanton, Berne and Levy Physiology, 6th edn. (Mosby, St. Louis, 2009)

    Google Scholar 

  26. A.C. Guyton, J.E. Hall, Textbook of Medical Physiology, 12th edn. (Elsevier Saunders, Philadelphia, 2010)

    Google Scholar 

  27. A.B.H. Yoruç, B.C. Şener, Biomaterials, a roadmap of biomedical engineers and milestones, ed. by Sadik Kara (InTech, 2012). ISBN: 978-953-51-0609-8

    Google Scholar 

  28. F.O. Costa, S. Takenaka-Martinez, L.O. Cota, S.D. Ferreira, G.L. Silva, J.E. Costa, Peri-implant disease in subjects with and without preventive maintenance: a 5-year follow-up. J. Clin. Periodontol. 39(2), 173–181 (2012). https://doi.org/10.1111/j.1600-051X.2011.01819.x

    Article  Google Scholar 

  29. M. Esposito, M.G. Grusovin, V. Loli, P. Coulthard, H.V. Worthington, Does antibiotic prophylaxis at implant placement decrease early implant failures? A Cochrane systematic review. Eur. J. Oral Implantol. 3(2), 101–110 (2010)

    Google Scholar 

  30. A. Tathe, M. Ghodke, A.P. Nikalje, A brief review: biomaterials and their application. Int. J. Pharm. Pharm. Sci. 2(4), 19–23 (2010)

    CAS  Google Scholar 

  31. S.R. Hanson, E.I. Tucker, R.A. Latour, Blood coagulation and blood–material interactions, in An Introduction to Materials in Medicine, Biomaterials Science, 4th edn. (Academic Press, 2020), pp. 801–812. https://doi.org/10.1016/B978-0-12-816137-1.00052-0

  32. F. Albee, H. Morrison, Studies in bone growth: triple calcium phosphate as a stimulus to osteogenesis. Ann. Surg. 71, 32–38 (1920). https://doi.org/10.1097/00000658-192001000-00006

    Article  CAS  Google Scholar 

  33. W. Habraken, P. Habibovic, M. Epple, M. Bohner, Calcium phosphates in biomedical applications: materials for the future? Mater. Today 19(2), 69–87 (2016). https://doi.org/10.1016/j.mattod.2015.10.008

    Article  CAS  Google Scholar 

  34. P.N. Kumta, C. Sfeir, D.H. Lee, D. Olton, D. Choi, Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. Acta Biomater. 1, 65–83 (2005). https://doi.org/10.1016/j.actbio.2004.09.008

    Article  Google Scholar 

  35. M.N. Hassan, M.M. Mahmoud, A. Abd El-Fattah, S. Kandil, Microwave-assisted preparation of nano-hydroxyapatite for bone substitutes. Ceram. Int. 42, 3725–3744 (2016). https://doi.org/10.1016/j.ceramint.2015.11.044

  36. A. Nakahira, K. Nakata, C. Numako, H. Murata, K. Matsunaga, Synthesis and evaluation of calcium-deficient hydroxyapatite with SiO2. Mater. Sci. Appl. 2, 1194–1198 (2011). https://doi.org/10.4236/msa.2011.29161

    Article  CAS  Google Scholar 

  37. X. Li, Y. Deng, M. Wang, X. Chen, Y. Xiao, X. Zhang, Stabilization of Ca-deficient hydroxyapatite in biphasic calcium phosphate ceramics by adding alginate to enhance their biological performances. J. Mater. Chem. B 6, 84–97 (2018). https://doi.org/10.1039/c7tb02620j

    Article  CAS  Google Scholar 

  38. M. Bohner, B.G. Santoni, N. Dobelin, β-tricalcium phosphate for bone substitution: synthesis and properties. Acta Biomater. 113, 23–41 (2020). https://doi.org/10.1016/j.actbio.2020.06.022

    Article  CAS  Google Scholar 

  39. R.G. Carrodeguas, S. De Aza, α-Tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater. 7, 3536–3546 (2011). https://doi.org/10.1016/j.actbio.2011.06.019

    Article  CAS  Google Scholar 

  40. J.C. Elliott, Structure and chemistry of the apatites and other calcium orthophosphates, ed. by H.M. Hughes, (Elsevier, Amsterdam, 1994)

    Google Scholar 

  41. M. Canillas, P. Pena, A.H. de Aza, M.A. Rodríguez, Calcium phosphates for biomedical applications. Boletín de la Sociedad Española de Cerámica Y vidrio 56, 91–112 (2017). https://doi.org/10.1016/j.bsecv.2017.05.001

    Article  CAS  Google Scholar 

  42. N.A.S.M. Pu’ad, P. Koshy, H.Z. Abullah, M.I. Idris, T.C. Lee, Syntheses of hydroxyapatite from natural sources. Heliyon 5, 1–14 (2019). https://doi.org/10.1016/j.heliyon.2019.e01588

    Article  Google Scholar 

  43. M.A. Taha, R.A. Youness, M.F. Zawrah, Review on nanocomposites fabricated by mechanical alloying. Int. J. Miner. Metall. Mater. 26(9), 1047–1058 (2019). https://doi.org/10.1007/s12613-019-1827-4

    Article  Google Scholar 

  44. A. Szcześ, L. Holysz, E. Chibowski, Synthesis of hydroxyapatite for biomedical applications. Adv. Colloid Interface Sci. 249, 321–330 (2017). https://doi.org/10.1016/j.cis.2017.04.007

    Article  CAS  Google Scholar 

  45. R.A. Youness, M.A. Taha, H. Elhaes, M. Ibrahim, Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated-hydroxyapatite prepared by mechanochemical synthesis. Mater. Chem. Phys. 190, 209–218 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.004

    Article  CAS  Google Scholar 

  46. R.A. Youness, M.A. Taha, H. Elhaes, M. Ibrahim, Preparation, Fourier transform infrared characterization and mechanical properties of hydroxyapatite nanopowders. J. Comput. Theor. Nanosci. 14, 2409–2415 (2017). https://doi.org/10.1166/jctn.2017.6841

    Article  CAS  Google Scholar 

  47. R.A. Youness, M.A. Taha, M. Ibrahim, In vitro bioactivity, physical and mechanical properties of carbonated-fluoroapatite during mechanochemical synthesis. Ceram. Int. 44, 21323–21329 (2018). https://doi.org/10.1016/j.ceramint.2018.08.184

    Article  CAS  Google Scholar 

  48. R.A. Youness, M.A. Taha, M. Ibrahim, Dense alumina-based carbonated fluorapatite nanobiocomposites for dental applications. Mater. Chem. Phys. 257, 123264 (2020). https://doi.org/10.1016/j.matchemphys.2020.123264

    Article  CAS  Google Scholar 

  49. A. Refaat, R.A. Youness, M.A. Taha, M. Ibrahim, Effect of zinc oxide on the electronic properties of carbonated hydroxyapatite. J. Mol. Struct. 1147(5), 148–154 (2017). https://doi.org/10.1016/j.molstruc.2017.06.091

    Article  CAS  Google Scholar 

  50. M. Sadat-Shojai, M.T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi, Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 9(8), 7591–7621 (2013). https://doi.org/10.1016/j.actbio.2013.04.012

    Article  CAS  Google Scholar 

  51. J. Chen, Y. Wang, X. Chen, L. Ren, C. Lai, W. He, Q. Zhang, A simple sol-gel technique for synthesis of nanostructured hydroxyapatite, tricalcium phosphate and biphasic powders. Mater. Lett. 65, 1923–1926 (2011). https://doi.org/10.1016/j.matlet.2011.03.076

    Article  CAS  Google Scholar 

  52. H. Eshtiagh-Hosseini, M.R. Housaindokht, M. Chahkandi, Effects of parameters of sol-gel process on the phase evolution of sol-gel derived hydroxyapatite. Mater. Chem. Phys. 106, 310–316 (2007). https://doi.org/10.1016/j.matchemphys.2007.06.002

    Article  CAS  Google Scholar 

  53. A. Fihri, C. Len, R.S. Varma, A. Solhy, Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis. Coord. Chem. Rev. 347, 48–76 (2017). https://doi.org/10.1016/j.ccr.2017.06.009

    Article  CAS  Google Scholar 

  54. S.K. Swain, D. Sarkar, A comparative study: hydroxyapatite spherical nanopowders and elongated nanorods. Ceram. Int. 37, 2927–2930 (2011). https://doi.org/10.1016/j.ceramint.2011.03.077

    Article  CAS  Google Scholar 

  55. D.S. Gomes, A.M.C. Santos, G.A. Neves, R.R. Menezes, A brief review on hydroxyapatite production and use in biomedicine. Ceramica 65, 869–872 (2019). https://doi.org/10.1590/0366-69132019653742706

    Article  CAS  Google Scholar 

  56. M. Okada, T. Furuzono, Hydroxylapatite nanoparticles: fabrication methods and medical applications. Sci. Technol. Adv. Mater. 13, 1–14 (2012). https://doi.org/10.1088/1468-6996/13/6/064103

    Article  CAS  Google Scholar 

  57. H.C. Shum, A. Bandyopadhyay, S. Bose, D.A. Weitz, Double emulsion droplets as microreactors for synthesis of mesoporous hydroxyapatite. Chem. Mater. 21, 5548–5555 (2009). https://doi.org/10.1021/cm9028935

    Article  CAS  Google Scholar 

  58. S.K. Saha, A. Banerjee, S. Banerjee, S. Bose, Synthesis of nanocrystalline hydroxyapatite using surfactant template systems: role of templates in controlling morphology. Mater. Sci. Eng. C 29, 2294–2301 (2009). https://doi.org/10.1016/j.msec.2009.05.019

    Article  CAS  Google Scholar 

  59. G. Guo, Y. Sun, Z. Wang, H. Guo, Preparation of hydroxyapatite nanoparticles by reverse microemulsion. Ceram. Int. 31, 869–872 (2005). https://doi.org/10.1016/j.ceramint.2004.10.003

    Article  CAS  Google Scholar 

  60. M. Jamil, B. Elouatli, H. Khallok, A. Elouahli, E. Gourri, M. Ezzahmouly, F. Abida, Z. Hatim, Silicon substituted hydroxyapatite: preparation with solid-state reaction, characterization and dissolution properties. J. Mater. Environ. Sci. 9, 2322–2327 (2018)

    CAS  Google Scholar 

  61. G. Heinicke, Tribochemistry, ed. by Carl Hanser Verlag, (Munchen Publishers, 1984), p. 119

    Google Scholar 

  62. S. Adzila, I. Sopyan, M. Hamdi, Mechanochemical synthesis of hydroxyapatite nanopowders: effects of rotation speed and milling time on powder properties. AMM 110–116, 3639–3644 (2012). https://doi.org/10.4028/www.scientific.net/AMM.110-116.3639

    Article  CAS  Google Scholar 

  63. R.A. Youness, M.A. Taha, M.A. Ibrahim, In vitro bioactivity, molecular structure and mechanical properties of zirconia-carbonated hydroxyapatite nanobiocomposites sintered at different temperatures. Mater. Chem. Phys. 239, 122011 (2020). https://doi.org/10.1016/j.matchemphys.2019.122011

    Article  CAS  Google Scholar 

  64. P. Kamalanthan, R. Singh, L.T. Bang, A. Niakan, C.Y. Tan, J. Purbolaksono, H.C. Thambinayagam, W. Teng, Synthesis and sintering of hydroxyapatite derived from eggshells as a calcium precursor. Ceram. Int. 40(10B), 16349–16359 (2014). https://doi.org/10.1016/j.ceramint.2014.07.074

    Article  CAS  Google Scholar 

  65. P.A.F. Sossa, B.S. Giraldo, B.C.G. Garcia, E.R. Parra, P.J.A. Arango, Comparative study between natural and synthetic hydroxyapatite: structural, morphological and bioactivity properties. Revista Materia 23(4), 12217 (2018). https://doi.org/10.1590/s1517-707620180004.0551

    Article  CAS  Google Scholar 

  66. M.K. Herliansyah, D.A. Nasution, M. Hamdi, A. Ide-Ektessabi, M.W. Wildan, A.E. Tontowi, Preparation and characterization of natural hydroxyapatite: a comparative study of bovine bone hydroxyapatite and hydroxyapatite from calcite. Mater. Sci. Forum 561–565, 1441–1444 (2007). https://doi.org/10.4028/www.scientific.net/MSF.561-565.144

    Article  Google Scholar 

  67. A. Ressler, K. Gudelj, M. Zadro, M. Antunović, M. Cvetnić, M. Ivanković, H. Ivanković, From bio-waste to bone substitute: synthesis of biomimetic hydroxyapatite and its use in chitosan-based composite scaffold preparation. Chem. Biochem. Eng. Q. 34(2), 59–71 (2020). https://doi.org/10.15255/CABEQ.2020.183

    Article  CAS  Google Scholar 

  68. B.N. Alhussary, G.A. Taqa, A.A. Taqa, Preparation and characterization of natural nano hydroxyapatite from egg shell and seashell and its effect on bone healing. JAVS 5(2), 25–32 (2020). https://doi.org/10.21608/JAVS.2020.85567

    Article  Google Scholar 

  69. L. Dou, Y. Zhang, H. Sun, Advances in synthesis and functional modification of nanohydroxyapatite. J. Nanomater. 2018, 1–7 (2018). https://doi.org/10.1155/2018/3106214

    Article  CAS  Google Scholar 

  70. T. Laonapakul, Synthesis of hydroxyapatite from biogenic wastes. KKU Eng. J. 42(3), 269–275 (2015). https://doi.org/10.14456/kkuenj.2015.30

    Article  Google Scholar 

  71. A.M. Torgalkar, A resonance frequency technique to determine elastic modulus of hydroxyapatite. J. Biomed. Mater. Res. 13(6), 907–920 (1979). https://doi.org/10.1002/jbm.820130609

    Article  CAS  Google Scholar 

  72. P.N. De Aza, A.H. De Aza, S. De Aza, Crystalline bioceramic materials. Bol. Soc. Esp. Ceram. Vidr. 44(3), 135–145 (2005)

    Google Scholar 

  73. C.R. Bowen, J. Gittings, I.G. Turner, F. Baxter, J.B. Chaudhuri, Dielectric and piezoelectric properties of hydroxyapatite-BaTiO3 composites. Appl. Phys. Lett. 89, 1–3 (2006). https://doi.org/10.1063/1.2355458

    Article  CAS  Google Scholar 

  74. M. Prakasam, M. Albino, E. Lebraud, M. Maglione, C. Elissalde, A. Largeteau, Hydroxyapatite-barium titanate piezocomposites with enhanced electrical properties. J. Am. Ceram. Soc. 100(6), 2621–2631 (2017)

    Article  CAS  Google Scholar 

  75. S. Pokhrel, Hydroxyapatite: preparation, properties and its biomedical applications. Adv. Chem. Eng. Sci. 8, 225–240 (2018). https://doi.org/10.4236/aces.2018.84016

    Article  CAS  Google Scholar 

  76. J.B. Foresman, Ab initio techniques in chemistry: interpretation and visualization, Chap. 14 in What Every Chemist Should Know About Computing, ed. M.L. Swift, T.J. Zielinski (ACS Books, Washington, D.C., 1996)

    Google Scholar 

  77. M. Ibrahim, A.A. Mahmoud, Computational notes on the reactivity of some functional groups. J. Comput. Theor. Nanosci. 6, 1523–1526 (2009). https://doi.org/10.1166/jctn.2009.1205

    Article  CAS  Google Scholar 

  78. H.A. Ezzat, M.A. Hegazy, N.A. Nada, M.A. Ibrahim, Effect of nano metal oxides on the electronic properties of cellulose, chitosan and sodium alginate. Biointerface Res. Appl. Chem. 9(4), 4143–4149 (2019). https://doi.org/10.33263/BRIAC94.979986

  79. A. Ibrahim, H. Elhaes, F. Meng, M. Ibrahim, Effect of hydration on the physical properties of glucose. Biointerface Res. Appl. Chem. 8(4), 4114–4118 (2019)

    Google Scholar 

  80. A.M. Bayoumy, H. Elhaes, O. Osman, K.T. Kholmurodov, T. Hussein, M.A. Ibrahim, Effect of nano metal oxides on heme molecule: molecular and bimolecular approaches. Biointerface Res. Appl. Chem. 10(1), 4837–4845 (2020). https://doi.org/10.33263/BRIAC101.837845

    Article  CAS  Google Scholar 

  81. A.M. Bayoumy, H. Elhaes, O. Osman, T. Hussein, M.A. Ibrahim, Mapping molecular electrostatic potential for heme interacting with nano metal oxides. Biointerface Res. Appl. Chem. 10(2), 5091–5095 (2020)

    Article  CAS  Google Scholar 

  82. G.W. Ali, W.I. Abdel-Fattah, H. Elhaes, M.A. Ibrahim, Spectroscopic and modeling analyses of bimolecular structure of corn silk. Biointerface Res. Appl. Chem. 9(6), 4481–4485 (2019). https://doi.org/10.33263/BRIAC0102.091095

    Article  Google Scholar 

  83. M.M. El-Sayed, A. Omar, M. Ibrahim, W.I. Abdel-Fattah, On the structural analysis and electronic properties of chitosan/hydroxyapatite interaction. J. Comput. Theor. Nanosci. 6, 1663–1669 (2009). https://doi.org/10.1166/jctn.2010.1363

    Article  CAS  Google Scholar 

  84. A. Wierzbicki, H.S. Cheung, Molecular modeling of inhibition of hydroxyapatite by phosphocitrate. J. Mol. Struct. THEOCHEM 529(1–3), 73–82 (2000). https://doi.org/10.1016/S0166-1280(00)00534-0

    Article  CAS  Google Scholar 

  85. J. Zhao, L. Wu, C. Zhan, Q. Shao, Z. Guo, L. Zhang, Overview of polymer nanocomposites: computer simulation understanding of physical properties. Polymer 133, 272–2872 (2017). https://doi.org/10.1016/.polymer.2017.10.035

    Article  CAS  Google Scholar 

  86. N. Zhang, Y. Cheng, X. Hu, J. Yeo, Toward rational algorithmic design of collagen-based biomaterials through multiscale computational modeling. Curr. Opin. Chem. Eng. 24, 79–87 (2019). https://doi.org/10.1016/j.coche.2019.02.011

    Article  Google Scholar 

  87. M. Nouri-Felekori, M. Khakbiz, N. Nezafati, J. Mohammadi, M.B. Eslaminejad, N. Fani, Characterization and multiscale modeling of novel calcium phosphate composites containing hydroxyapatite whiskers and gelatin microspheres. J. Alloys Compd. 832, 154938 (2020). https://doi.org/10.1016/j.jallcom.2020.154938

    Article  CAS  Google Scholar 

  88. G.E. Dubinenko, A.L. Zinoviev, E.N. Bolbasov, V.T. Novikov, S.I. Tverdokhlebov, Preparation of poly(L-lactic acid)/hydroxyapatite composite scaffolds by fused deposit modeling 3D printing. Mater. Today Proc. 22(2), 228–234 (2020). https://doi.org/10.1016/j.matpr.2019.08.092

    Article  CAS  Google Scholar 

  89. C.M. Garcia, S.A. Toms, A cautionary tale of hydroxyapatite cement use in frontal sinus obliteration. Interdiscip. Neurosurg. 21, 100702 (2020). https://doi.org/10.1016/j.inat.2020.100702

    Article  Google Scholar 

  90. S. Bose, S. Tarafder, Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 8(4), 1401–1421 (2012). https://doi.org/10.1016/j.actbio.2011.11.017

  91. U. Gbureck et al., Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing. Adv. Funct. Mater. 17(18), 3940–3945 (2007). https://doi.org/10.1002/adfm.200700019

  92. T. Tian, C. Wu, J. Chang, Preparation and in vitro osteogenic, angiogenic and antibacterial properties of cuprorivaite (CaCuSi4O10, Cup) bioceramics. RSC Adv. 6(51), 45840–45849 (2016). https://doi.org/10.1039/C6RA08145B

  93. X. Lin, S. Patil, Y.-G. Gao, A. Qian, The bone extracellular matrix in bone formation and regeneration. Front. Pharmacol. 11, 1–15 (2020). https://doi.org/10.3389/2fphar.2020.00757

  94. M.-Y. Shie, S.-J. Ding, H.-C. Chang, The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater. 7(6), 2604–2614 (2011). https://doi.org/10.1016/j.actbio.2011.02.023

    Article  CAS  Google Scholar 

  95. R.A. Youness, M.A. Taha, M.A. Ibrahim, Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nanobiocomposites. J. Mol. Struct. 1150, 188–195 (2017). https://doi.org/10.1016/j.molstruc.2017.08.070

    Article  CAS  Google Scholar 

  96. R.A. Youness, M.A. Taha, A.A. El-Kheshen, M. Ibrahim, Influence of the addition of carbonated hydroxyapatite and selenium dioxide on mechanical properties and in vitro bioactivity of borosilicate inert glass. Ceram. Int. 44, 20677–20685 (2018). https://doi.org/10.1016/j.ceramint.2018.08.061

    Article  CAS  Google Scholar 

  97. M.A. Taha, R.A. Youness, M. Ibrahim, Biocompatibility, physico-chemical and mechanical properties of hydroxyapatite-based silicon dioxide nanocomposites for biomedical applications. Ceram. Int. 46, 23599–23610 (2020). https://doi.org/10.1016/j.ceramint.2020.06.132

    Article  CAS  Google Scholar 

  98. D. Arcos, M. Vallet-Regí, Substituted hydroxyapatite coatings of bone implants. J. Mater. Chem. B 8, 1781–1800 (2020). https://doi.org/10.1039/c9tb02710f

    Article  CAS  Google Scholar 

  99. R. Chaharmahali, A. Fattah-Alhosseini, H. Esfahani, Increasing the in-vitro corrosion resistance of AZ31B-Mg alloy via coating with hydroxyapatite using plasma electrolytic oxidation. J. Asian Ceram. Soc. 8, 39–49 (2020). https://doi.org/10.1080/21870764.2019.1698143

    Article  Google Scholar 

  100. T.J. Levingstone, S. Herbaj, J. Redmond, H.O. McCarthy, N.J. Dunne, Calcium phosphate nanoparticles-based systems for RNAi delivery: applications in bone tissue engineering. Nanomaterials 146(10), 1–28 (2020). https://doi.org/10.3390/nano10010146

    Article  CAS  Google Scholar 

  101. X. Zeng, H. Xu, J. Lu, Q. Chen, W. Li, L. Wu, J. Tang, L. Ma, The immobilization of soil cadmium by the combined amendment of bacteria and hydroxyapatite. Sci. Rep. 10, 2198 (2020). https://doi.org/10.1038/s41598-020-58259-1

    Article  CAS  Google Scholar 

  102. J.A.G. del Rio, P.J. Morando, D.S. Cicerone, Natural materials for treatment of industrial effluents: comparative study of the retention of Cd, Zn and Co by calcite and hydroxyapatite. Part I: batch experiments. J. Environ. Manage. 71, 169–177 (2004). https://doi.org/10.1016/j.jenvman.2004.02.004

  103. Ramdani, A. Kadeche, M. Adjdir, Z. Taleb, D. Ikhou, S. Taleb, A. Deratani, Lead and cadmium removal by adsorption process using hydroxyapatite porous materials, Water Pract. Technol. 15(1), 130–141 (2020). https://doi.org/10.2166/wpt.2020.003

  104. K. Usami, A. Okamoto, Hydroxyapatite: catalyst for a one-pot pentose formation. Org. Biomol. Chem. 15, 8888–8893 (2017). https://doi.org/10.1039/c7ob02051a

    Article  CAS  Google Scholar 

  105. S. ben Moussa, A. Mehri, B. Badraoui, Magnesium modified calcium hydroxyapatite: an efficient and recyclable catalyst for the one-pot Biginelli condensation. J. Mol. Struct. 1200, 127111 (2020). https://doi.org/10.1016/j.molstruc.2019.127111

  106. D. Milovac, I. Weigand, M. Kovacic, M. Ivankovic, H. Ivankovic, Highly porous hydroxyapatite derived from cuttlefish bone as TiO2 catalyst support. Process. Appl. Ceram. 12(2), 136–142 (2018). https://doi.org/10.2298/PAC1802136M

    Article  CAS  Google Scholar 

  107. S.C. Oh, J. Xu, D.T. Tran, B. Liu, D. Liu, Effects of controlled crystalline surface of hydroxyapatite on methane oxidation reactions. ACS Catal. 8(5), 4493–4507 (2018). https://doi.org/10.1021/acscatal.7b04011

    Article  CAS  Google Scholar 

  108. M. Shokouhimehr, S.M.G. Yek, M. Nasrollahzadeh, A. Kim, R.S. Varma, Palladium nanocatalysts on hydroxyapatite: green oxidation of alcohol and reduction of nitroarenes in water. Appl. Sci. 9, 1–12 (2019). https://doi.org/10.3390/app9194183

    Article  CAS  Google Scholar 

  109. J. Xu, T. White, P. Li, C. He, Y.F. Han, Hydroxyapatite foam as a catalyst for formaldehyde combustion at room temperature. J. Am. Chem. Soc. 132(38), 13172–13173 (2010). https://doi.org/10.1021/ja1058923

    Article  CAS  Google Scholar 

  110. M.B. Taşkın, Ö. Şahin, H. Taskin, O. Atakol, A. Inal, A. Gunes, Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativa L.) plant, J. Plant Nutr. 41(9), 1148–1154 (2018). https://doi.org/10.1080/01904167.2018.1433836

  111. N. Kottegoda, C. Sandaruwan, G. Priyadarshana, A. Siriwardhana, U.A. Rathnayake, D.M.B. Arachchige, A.R. Kumarasinghe, D. Dahanayake, V. Karunaratne, G.A. Amaratunga, Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11(2), 1214–1221 (2017). https://doi.org/10.1021/acsnano.6b07781

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Medhat Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ibrahim, M., Youness, R.A., Taha, M.A. (2024). Overview of Some Production Routes for Hydroxyapatite and Its Applications. In: Ikhmayies, S.J. (eds) Advances in Minerals Research. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-49175-7_6

Download citation

Publish with us

Policies and ethics