Skip to main content

Automated Device for Surface Modification and Synthesis of Functional Layers in Microfluidic Chips

  • Conference paper
  • First Online:
Advances in Mechanical Engineering (MMESE 2023)

Abstract

The mock-up of an automated device for microfluidic chip surfaces processing by “wet” chemistry methods is presented. Automation of surface modification processes and functional layers creation in microfluidic chip allows to reduce processing time, eliminate the human factor influence, increase reproducibility, accuracy and correctness of subsequent sample analysis of chemical and biological objects. It may be used when creating devices for different purposes, for example, for immune analysis, biochips, for the synthesis of materials and a number of others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao, Y., et al.: Microfluidic actuated and controlled systems and application for lab-on chip in space life science. Space Sci. Technol. 3, 0008 (2023)

    Article  Google Scholar 

  2. Lapizco-Encinas, B.H., Zhang, Y.V.: Microfluidic systems in clinical diagnosis. Electrophoresis 44, 217–245 (2023)

    Article  Google Scholar 

  3. Bruijns, B., Knotter, J., Tiggelaar, R.: A systematic review on commercially available integrated systems for forensic DNA analysis. Sensors 23(3), 1075 (2023)

    Article  Google Scholar 

  4. Choi, Y., Kim, Y.T., Lee, S.J., Lee, E., Lee, K.G., Im, S.G.: Direct solvent-free modification of the inner wall of the microchip for rapid DNA extraction with enhanced capturing efficiency. Macromol. Res. 28(3), 249–256 (2020)

    Article  Google Scholar 

  5. La, H.C., Lee, N.Y.: Fabrication of a polycarbonate microdevice and boronic acid-mediated surface modification for on-chip sample purification and amplification of foodborne pathogens. Biomed. Microdevices 21(3), 72 (2019)

    Article  Google Scholar 

  6. Li, S., Sedakova, E.B.: Application of molecular dynamic modeling to study the structural changes during adhesive wear of polytetrafluoroethylene and its composite. In: Evgrafov, A.N. (eds.) Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-91553-7_8

  7. Kurochkin, V.E., Alexseev, Y.I., Petrov D.G., Evstrapov, A.A.: Domestic devices for molecular genetic analysis: developments of the IAI RAS and SINTOL LLC. News Russ Milit Med Acad 40(3), 69–74 (2021) (in Russian)

    Google Scholar 

  8. Kozlova, O.S., Abramova, Z.I.: Genome assembly of the anhydrobiotic insect Polypedilum vanderplanki using Illumina and Pacbio data. Sci. zap. Kazan. Univ. Ser. Nat. Sci.160(2), 214–226 (2018) (in Russian)

    Google Scholar 

  9. Pompeev, K.P., Pleshkov, A.A., Borbotko, V.A.: Interactive synthesis of technological dimensional schemes. In: Evgrafov, A.N. (eds.) Advances in Mechanical Engineering. MMESE 2020. Lecture Notes in Mechanical Engineering. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-62062-2_13

  10. Trusova, E.A., Vokhmintcev, K.V., Zagainov, I.V.: Wet-chemistry processing of powdery raw material for high-tech ceramics. Nanoscale Res. Lett. 7(58), 1–5 (2012)

    Google Scholar 

  11. Shakeri, A., Jarad, N.A., Leung, A., Soleymani, L., Didar, T.F.: Biofunctionalization of glass- and paper-based microfluidic devices: a review. Adv. Mater. Interfaces 6(19), 1900940 (2019)

    Article  Google Scholar 

  12. Shakeri, A., Jarad, N.A., Khan, S., Didar, T.F.: Bio-functionalization of microfluidic platforms made of thermoplastic materials: a review. Anal. Chim. Acta 1209, 339283 (2022)

    Article  Google Scholar 

  13. Temiz, Y., Lovchik, R.D., Kaigala, G.V., Demarche, E.: Lab-on-a-chip devices: How to close and plug the lab? Microelectron. Eng. 132, 156–175 (2015)

    Article  Google Scholar 

  14. Germash, N.N., Esikova, N.A., Afonicheva, P.K., Antifeev, I.E., Petrov, D.G., Evstrapov, A.A.: Elastomer planar device for nucleic acids extraction. IOP Conf. Ser.: J. Phys.: Conf. Ser. 1697, 012043 (2020)

    Google Scholar 

  15. Kuznetsov, P.A., Karachevtsev, I.D., Prostorova, A.O., Tretyakov, V.P., Khrustaleva, I.N.: The elastostatic pressing and rotary forging of high-density sintered products technology. In: Evgrafov, A.N. (eds.) Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-91553-7_17

  16. Bruus, H.: Theoretical Microfluidics, 1st edn. Oxford University Press Ink., New York (2008)

    Google Scholar 

  17. Hydraulic resistance ..., https://www.nektonnasos.ru/articles/gidravlicheskoe-soprotivlenie. Accessed 22 May 2023 (in Russian)

  18. Borodinov, A.G., Manoilov, V.V., Zarutskiy, I.V., Petrov, A.I., Kurochkin, V.E.: Methodology for assessing the quality of genomic assembly based on the analysis of the frequency of k-mers in a parallel sequencing sequencer. Nauchnoe Priborostroenie 32(1), 3–10 (2022) (in Russian)

    Google Scholar 

  19. Gusev, E.Y.: Development of manufacturing technology of micro-mechanical accelerometer based on polycrystalline silicon by surface microtreatment methods. In: Proceedings of the South Federal University. Technical Sciences, vol. 10, no. 183, pp. 52–64 (2016) (in Russian)

    Google Scholar 

  20. Gasyuk, D.P., Kosova, V.A.: The problem of selecting the optimal kind of mechanical engineering process under modern conditions. In: Evgrafov, A.N. (eds.) Advances in Mechanical Engineering. MMESE Lecture Notes in Mechanical Engineering. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-30027-1_2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Bulyanitsa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bulyanitsa, A.L., Esikova, N.A., Evstrapov, A.A. (2024). Automated Device for Surface Modification and Synthesis of Functional Layers in Microfluidic Chips. In: Evgrafov, A.N. (eds) Advances in Mechanical Engineering. MMESE 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-48851-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48851-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48850-4

  • Online ISBN: 978-3-031-48851-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics