Skip to main content

Antioxidant Defense Mechanism in Plants Exposed to Mercury Toxicity: Response, Tolerance and Remediation

  • Chapter
  • First Online:
Mercury Toxicity Mitigation: Sustainable Nexus Approach

Abstract

In the current era of industrialization, the presence of mercury in the soil as a result of anthropogenic and natural processes is a topic of concern on a worldwide scale since it adversely impacts agricultural productivity, the environment, and human health. The toxicity of mercury results in oxidative damage, which seriously impairs plant growth and productivity. The defense mechanisms of plants against mercuric toxicity have recently been the subject of in-depth investigation. Plants exposed to mercury resulted in reduced root growth, shoot growth, plant height, relative water content, biomass production, chlorophyll content, photosynthetic rate, stomatal conductance, carbon assimilation with enhanced hydrogen peroxide production, free radicals or superoxides, malondialdehyde production. In order to cope with the oxidative stress caused by mercury, plants have evolved a number of adaptive strategies, including the accumulation of enzymatic and non-enzymatic antioxidants (Catalase, Peroxidase, Ascorbic acid, Super oxide dismutase, Phytochelatin, Metallothioneins), osmolytes like proline, and polyamines (PAs), which control a plant's normal growth and development while surviving in metal-contaminated urban and sub-urban areas. These biomolecules facilitates in inducing tolerance and resistance towards mercury by the plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahammad SJ, Sumithra S, Senthilkumar P (2018) Mercury uptake and translocation by indigenous plants. Rasayan J Chem 11(1):1–12

    CAS  Google Scholar 

  2. Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 613

    Google Scholar 

  3. Alamri SA, Siddiqui MH, Al-Khaishany MY, Nasir Khan M, Ali HM, Alaraidh IA, Alsahli AA, Al-Rabiah H, Mateen M (2018) Ascorbic acid improves the tolerance of wheat plants to lead toxicity. J Plant Interact 13(1):409–419

    Article  CAS  Google Scholar 

  4. Ansari MKA, Ahmad A, Umar S, Iqbal M (2009) Mercury-induced changes in growth variables and antioxidative enzyme activities in Indian mustard. J Plant Interact 4(2):131–136

    Article  CAS  Google Scholar 

  5. Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 1227–1238

    Google Scholar 

  6. Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimising toxicity of cadmium in plants—role of plant growth regulators. Protoplasma 252(2):399–413

    Article  CAS  Google Scholar 

  7. Azad HN, Kafilzadeh F (2012) Physiological responses to mercury stress in the hydroponic cultures of safflower (Carthamus tinctorius L.) plants. J Biodivers Environ Sci (JBES) 2(9):12–20

    Google Scholar 

  8. Azevedo R, Rodriguez E (2012) Phytotoxicity of mercury in plants: a review. J Bot

    Google Scholar 

  9. Baya A, Heyst BV (2010) Assessing the trends and effects of environmental parameters on the behaviour of mercury in the lower atmosphere over cropped land over four seasons. Atmos Chem Phys 10(17):8617–8628

    Article  CAS  Google Scholar 

  10. Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40(12):1335–1351

    Article  CAS  Google Scholar 

  11. Carrasco-Gil S, Siebner H, LeDuc DL, Webb SM, Millán R, Andrews JC, Hernández LE (2013) Mercury localization and speciation in plants grown hydroponically or in a natural environment. Environ Sci Technol 47(7):3082–3090

    Article  CAS  Google Scholar 

  12. Chattopadhyay S, Fimmen RL, Yates BJ, Lal V, Randall P (2012) Phytoremediation of mercury-and methyl mercury-contaminated sediments by water hyacinth (Eichhornia crassipes). Int J Phytorem 14(2):142–161

    Article  Google Scholar 

  13. Chen J, Yang ZM (2011) Enhancement of tolerance of Indian mustard (Brassica juncea) to mercury by carbon monoxide. J Hazard Mater 186(2–3):1823–1829

    Google Scholar 

  14. Chen J, Shiyab S, Han FX, Monts DL, Waggoner CA, Yang Z, Su Y (2009) Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology 18(1):110–121

    Article  CAS  Google Scholar 

  15. Cozzolino V, De Martino A, Nebbioso A, Di Meo V, Salluzzo A, Piccolo A (2016) Plant tolerance to mercury in a contaminated soil is enhanced by the combined effects of humic matter addition and inoculation with arbuscular mycorrhizal fungi. Environ Sci Pollut Res 23(11):11312–11322

    Article  CAS  Google Scholar 

  16. DalCorso G, Manara A, Furini A (2013) An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5(9):1117–1132

    Article  CAS  Google Scholar 

  17. Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J

    Google Scholar 

  18. Fidalgo F, Azenha M, Silva AF, de Sousa A, Santiago A, Ferraz P, Teixeira J (2013) Copper‐induced stress in S olanum nigrum L. and antioxidant defense system responses. Food Energy Secur 2(1):70–80

    Google Scholar 

  19. Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112–120

    Article  CAS  Google Scholar 

  20. Gimenez I, Waldbusser GG, Hales B, Keister JE (2018) Ocean acidification stress index for shellfish (OASIS): Linking Pacific oyster larval survival and exposure to variable carbonate chemistry regimes. Elem: Sci Anthropocene 6

    Google Scholar 

  21. Gomes MP, Le Manac’h SG, Maccario S, Labrecque M, Lucotte M, Juneau P (2016) Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants. Pestic Biochem Physiol 130:65–70

    Article  CAS  Google Scholar 

  22. Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017) Glutathione in plants: biosynthesis and physiological role environmental stress tolerance. Physiol Mol Biol Plants 23:249–268. https://doi.org/10.1007/s12298-017-0422-2

    Article  CAS  Google Scholar 

  23. Hasanuzzaman M, Bhuyan M, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681

    Article  CAS  Google Scholar 

  24. Hashemi SA, Tabibian S (2018) Application of Mulberry nigra to absorb heavy metal, mercury, from the environment of green space city. Toxicol Rep 5:644–646

    Article  CAS  Google Scholar 

  25. Hu Y, Wang Y, Liang Y, Guo J, Gong H, Xu Z (2020) Silicon alleviates mercury toxicity in garlic plants. J Plant Nutr 43(16):2508–2517

    Article  CAS  Google Scholar 

  26. Hussain K, Nabeesa S (2012) Bioaccumulation pattern of mercury in Bacopa monnieri (L.) Pennell. J Stress Physiol Biochem 8(2):10–21

    Google Scholar 

  27. Isah T (2019) Stress and defense responses in plant secondary metabolites production. Biol Res 52

    Google Scholar 

  28. Jansukaitiene I (2010) Impact of low concentration of cadmium on photosynthesis and growth of pea and barley. Environ Res Eng Manag 53(3):24–29

    Google Scholar 

  29. Jiang S-Y, Ma Z, Ramachandran S (2010) Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evol Biol 10(1):1–24

    Article  CAS  Google Scholar 

  30. Kapoor D, Kaur S, Bhardwaj R (2014) Physiological and biochemical changes in Brassica juncea plants under Cd-induced stress. BioMed Res Int

    Google Scholar 

  31. Kim S, Lim H, Lee I (2010) Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates. J Biosci Bioeng 109:47–50

    Article  CAS  Google Scholar 

  32. Kumar V, Singh J, Saini A, Kumar P (2019) Phytoremediation of copper, iron and mercury from aqueous solution by water lettuce (Pistia stratiotes L.). Environ Sustain 2:55–65

    Article  CAS  Google Scholar 

  33. Li Y, Zhao J, Zhang B, Liu Y, Xu X, Li Y-F, Li B, Gao Y, Chai Z (2015) The influence of iron plaque on the absorption, translocation and transformation of mercury in rice (Oryza sativa L.) seedlings exposed to different mercury species. Plant Soil 398(1–2):87–97

    Google Scholar 

  34. Lima F, Martins G, Silva A, Vasques I, Engelhardt M, Cândido G, Pereira P, Reis R, Carvalho G, Windmöller C (2019) Critical mercury concentration in tropical soils: impact on plants and soil biological attributes. Sci Total Environ 666:472–479

    Article  CAS  Google Scholar 

  35. Lin CH, Lerch RN, Kremer RJ, Garrett HE (2011) Stimulated rhizodegradation of atrazine by selected plant species. J Environ Qual 40(4):1113–1121

    Article  CAS  Google Scholar 

  36. Liu N, Miao Y, Zhou X, Gan Y, Liu S, Wang W, Dai J (2018) Roles of rhizospheric organic acids and microorganisms in mercury accumulation and translocation to different winter wheat cultivars. Agr Ecosyst Environ 258:104–112

    Article  CAS  Google Scholar 

  37. Liu Z, Wang L, Ding S, Xiao H (2018) Enhancer assisted-phytoremediation of mercury-contaminated soils by Oxalis corniculata L., and rhizosphere microorganism distribution of Oxalis corniculata L. Ecotoxicol Environ Saf 160:171–177

    Article  CAS  Google Scholar 

  38. Luo Q, Wang S, Sun LN, Wang H, Bao T, Adeel M (2017) Identification of root exudates from the Pb-accumulator Sedum alfredii under Pb stresses and assessment of their roles. J Plant Interact 12(1):272–278

    Article  CAS  Google Scholar 

  39. Lv S, Yang B, Kou Y, Zeng J, Wang R, Xiao Y, Li F, Lu Y, Mu Y, Zhao C (2018) Assessing the difference of tolerance and phytoremediation potential in mercury contaminated soil of a non-food energy crop, Helianthus tuberosus L.(Jerusalem artichoke). Peer J 6:e4325

    Google Scholar 

  40. Malar S, Sahi SV, Favas PJ, Venkatachalam P (2015) Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)]. Environ Sci Pollut Res 22:4597–4608

    Article  CAS  Google Scholar 

  41. Manikandan R, Sahi S, Venkatachalam P (2015) Impact assessment of mercury accumulation and biochemical and molecular response of Mentha arvensis: a potential hyperaccumulator plant. Sci. World J

    Google Scholar 

  42. Mao Q, Tang L, Ji W, Rennenberg H, Hu B, Ma M (2021) Elevated CO2 and soil mercury stress affect photosynthetic characteristics and mercury accumulation of rice. Ecotoxicol Environ Saf 208:111605

    Article  CAS  Google Scholar 

  43. Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J, Enamorado-Montes G, Díez S (2016) Mercury uptake and effects on growth in Jatropha curcas. J Environ Sci 48:120–125

    Article  Google Scholar 

  44. Mei L, Zhu Y, Zhang X, Zhou X, Zhong Z, Li H, Li Y, Li X, Daud MK, Chen J, Zhu S (2021) Mercury-induced phytotoxicity and responses in upland cotton (Gossypium hirsutum L.) seedlings. Plants 10(8):1494

    Google Scholar 

  45. Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164(5):601–610

    Article  CAS  Google Scholar 

  46. Mohanty P, Matysik J (2001) Effect of proline on the production of singlet oxygen. Amino Acids 21(2):195–200

    Article  Google Scholar 

  47. Montiel-Rozas M, Madejón E, Madejón P (2016) Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination. Environ Pollut 216:273–281

    Article  CAS  Google Scholar 

  48. Moreno FN, Anderson CW, Stewart RB, Robinson BH (2008) Phytofiltration of mercury-contaminated water: volatilisation and plant-accumulation aspects. Environ Exp Bot 62(1):78–85

    Article  CAS  Google Scholar 

  49. Muddarisna N, Krisnayanti B, Utami S, Handayanto E (2013) Phytoremediation of mercury-contaminated soil using three wild plant species and its effect on maize growth. Appl Ecol Environ Sci 1(3):27–32

    CAS  Google Scholar 

  50. Nagajyoti PC, Lee KD, Sreekanth T (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    Article  CAS  Google Scholar 

  51. Naharro R, Esbrí JM, Amorós JA, Higueras PL (2020) Experimental assessment of the daily exchange of atmospheric mercury in Epipremnum aureum. Environ Geochem Health 42(10):3185–3198

    Article  CAS  Google Scholar 

  52. Noctor G, Mhamdi A, Chaouch S, Han YI, Neukermans J, Marquez-Garcia BELEN, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant, Cell Environ 35(2):454–484

    Article  CAS  Google Scholar 

  53. Parmar P, Patel M, Dave B, Subramanian R (2012) Identification of colocassia esculentum a novel plant Spp for the application of phytoremediation. Afr J Basic Appl Sci 4(3):67–72

    CAS  Google Scholar 

  54. Parmar P, Kumari N, Sharma V (2013) Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot Stud 54(1):1–6

    Article  Google Scholar 

  55. Pogrzeba M, Rusinowski S, Krzyżak J, Szada-Borzyszkowska A, McCalmont JP, Zieleźnik-Rusinowska P, Słaboń N, Sas-Nowosielska A (2019) Dactylis glomerata L. cultivation on mercury contaminated soil and its physiological response to granular sulphur aided phytostabilization. Environ Pollut 255:113271

    Google Scholar 

  56. Raj D, Kumar A, Maiti SK (2020) Brassica juncea (L.) Czern. (Indian mustard): a putative plant species to facilitate the phytoremediation of mercury contaminated soils. Int J Phytorem 22(7):733–744

    Article  CAS  Google Scholar 

  57. Risch MR, DeWild JF, Krabbenhoft DP, Kolka RK, Zhang L (2012) Litterfall mercury dry deposition in the eastern USA. Environ Pollut 161:284–290

    Article  CAS  Google Scholar 

  58. Sahu GK, Upadhyay S, Sahoo BB (2012) Mercury induced phytotoxicity and oxidative stress in wheat (Triticum aestivum L.) plants. Physiol Mol Biol Plants 18:21–31

    Article  CAS  Google Scholar 

  59. Shaheen SM, Rinklebe J (2015) Phytoextraction of potentially toxic elements by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil. Environ Geochem Health 37:953–967

    Article  CAS  Google Scholar 

  60. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. Article ID 217037

    Google Scholar 

  61. Sheetal K, Singh S, Anand A, Prasad S (2016) Heavy metal accumulation and effects on growth, biomass and physiological processes in mustard. Indian J Plant Physiol 21(2):219–223

    Article  Google Scholar 

  62. Sierra M, Rodríguez-Alonso J, Millán R (2012) Impact of the lavender rhizosphere on the mercury uptake in field conditions. Chemosphere 89(11):1457–1466

    Article  CAS  Google Scholar 

  63. Sinduja M, Avudainayagam S, Davamani V, Suganthi R (2018) Uptake of mercury by marigold and amaranthus on spiked soil. Madras Agric J 105(7–9):346–351

    Google Scholar 

  64. Singh H, Kumar D, Soni V (2020) Copper and mercury induced oxidative stresses and antioxidant responses of Spirodela polyrhiza (L.) Schleid. Biochem Biophys Rep 23:100781

    Google Scholar 

  65. Sitarska M, Traczewska T, Filarowska W, Hołtra A, Zamorska-Wojdyła D, Hanus-Lorenz B (2023) Phytoremediation of mercury from water by monocultures and mixed cultures pleustophytes. J Water Process Eng 52:103529

    Article  Google Scholar 

  66. Smolinska B, Leszczynska J (2017) Photosynthetic pigments and peroxidase activity of Lepidium sativum L. during assisted Hg phytoextraction. Environ Sci Pollut Res 24:13384–13393

    Article  CAS  Google Scholar 

  67. Sofo A, Scopa A, Nuzzaci M, Vitti A (2015) Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci 16(6):13561–13578

    Article  CAS  Google Scholar 

  68. Suganthi R, Avudainayagam S, Davamani V, Banu KS, Chandrasekhar CN, Sivakumar U (2021) Indian mustard and Boston fern exhibits growth tolerance to increased dose of soil spiked mercury. Environ Ecol 39(3):525–532

    Google Scholar 

  69. Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35(4):985–999

    Article  CAS  Google Scholar 

  70. Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng

    Google Scholar 

  71. Thekkeveedu R, Hegde S (2021) In vitro spore germination and phytoremediation of Hg and Pb using gametophytes of Pityrogramma calomelanos. Int J Phytorem 23(3):307–315

    Article  Google Scholar 

  72. Tran TAT, Zhou F, Yang W, Wang M, Dinh QT, Wang D, Liang D (2018) Detoxification of mercury in soil by selenite and related mechanisms. Ecotoxicol Environ Saf 159:77–84

    Article  CAS  Google Scholar 

  73. Chakraborty D, Choudhury B (2023) Toxic effects of mercury on crop plants and its phhysiological and biochemical responses. A review. Int J Adv Res 11(02):168–174. https://doi.org/10.21474/IJAR01/16236

  74. Venkatesh J, Park SW (2014) Role of L-ascorbate in alleviating abiotic stresses in crop plants. Bot Stud 55:1–19

    Article  CAS  Google Scholar 

  75. Wang J, Feng X, Anderson CW, Wang H, Zheng L, Hu T (2012) Implications of mercury speciation in thiosulfate treated plants. Environ Sci Technol 46(10):5361–5368

    Article  CAS  Google Scholar 

  76. Wang J, Feng X, Anderson CW, Wang H, Wang L (2014) Thiosulphate-induced mercury accumulation by plants: metal uptake and transformation of mercury fractionation in soil-results from a field study. Plant Soil 375(1):21–33

    Article  CAS  Google Scholar 

  77. Wenzel WW, Lombi E, Adriano DC (2004) Root and Rhizosphere Processes in Metal Hyperaccumulation and Phytoremediation. Heavy Met Stress Plants: Biomol Ecosyst 365

    Google Scholar 

  78. Zhang H, Feng X, Larssen T, Shang L, Li P (2010) Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain. Environ Sci Technol 44(12):4499–4504

    Article  CAS  Google Scholar 

  79. Zhang L, Wong MH (2007) Environmental mercury contamination in China: sources and impacts. Environ Int 33(1):108–121

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Parwin Banu Kamaludeen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajendran, S., Kamaludeen, S.P., Subramanian, A. (2024). Antioxidant Defense Mechanism in Plants Exposed to Mercury Toxicity: Response, Tolerance and Remediation. In: Kumar, N. (eds) Mercury Toxicity Mitigation: Sustainable Nexus Approach. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-48817-7_10

Download citation

Publish with us

Policies and ethics