Skip to main content

ToFi-ML: Retinal Image Screening with Topological Machine Learning

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2023)

Abstract

The analysis of fundus images for the early screening of eye diseases is of great clinical importance. Traditional methods for such analysis are time-consuming and expensive as it requires a trained clinician. Therefore, the need for a comprehensive and automated method of retinal image screening to diagnose and grade retinal diseases has long been recognized. In the past decade, with the substantial developments in computer vision and deep learning, machine learning methods became highly effective in this field as clinical-decision support methods. However, most of these algorithms face challenges like computational feasibility, reliability, and interpretability.

In this paper, we develop a novel approach to this crucial task in retinal image screening. By employing topological data analysis tools, for the most common retinal diseases, i.e., Diabetic Retinopathy (DR), Glaucoma, and Age-related Macular Degeneration (AMD), we observe different types of topological patterns between normal and abnormal classes. These patterns enable us to produce topological fingerprints of fundus images, and we use them as feature vectors with standard ML methods. Our computationally efficient model ToFi-ML outperforms or gives highly competitive accuracy results with state-of-the-art deep learning methods. Furthermore, our topological fingerprints are both explainable and interpretable, and can easily be integrated with future early-screening ML models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/FaisalAhmed77/Topo-Ret.

References

  1. Adcock, A., Rubin, D., Carlsson, G.: Classification of hepatic lesions using the matching metric. Comput. Vis. Image Underst. 121, 36–42 (2014)

    Article  Google Scholar 

  2. Ajitha, S., Akkara, J.D., Judy, M.: Identification of glaucoma from fundus images using deep learning techniques. Indian J. Ophthalmol. 69(10), 2702 (2021)

    Article  Google Scholar 

  3. APTOS: Asia Pacific Tele-Ophthalmology Society (APTOS) 2019 Blindness Detection Dataset (2019). https://www.kaggle.com/c/aptos2019-blindness-detection

  4. Bendich, P., Marron, J.S., Miller, E., Pieloch, A., Skwerer, S.: Persistent homology analysis of brain artery trees. Ann. Appl. Stat. 10(1), 198 (2016)

    Article  MathSciNet  Google Scholar 

  5. Berry, E., Chen, Y.C., Cisewski-Kehe, J., Fasy, B.T.: Functional summaries of persistence diagrams. J. Appl. Comput. Topol. 4(2), 211–262 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodapati, J.D., et al.: Blended multi-modal deep convnet features for diabetic retinopathy severity prediction. Electronics 9(6), 914 (2020)

    Article  Google Scholar 

  7. Bodapati, J.D., et al.: Composite deep neural network with gated-attention mechanism for DR severity classification. J. Amb. Int. Hum. Compt. 12(10), 9825–9839 (2021)

    Google Scholar 

  8. Cámara, P.G., Levine, A.J., Rabadan, R.: Inference of ancestral recombination graphs through topological data analysis. PLoS Comput. Biol. 12(8), e1005071 (2016)

    Article  Google Scholar 

  9. Campbell, M.J., Machin, D., Walters, S.J.: Medical Statistics: A Textbook for the Health Sciences. Wiley, Hoboken (2010)

    MATH  Google Scholar 

  10. Carlsson, G., Vejdemo-Johansson, M.: Topological Data Analysis with Applications. Cambridge University Press, Cambridge (2021)

    Book  MATH  Google Scholar 

  11. Chakraborty, R., Pramanik, A.: DCNN-based prediction model for detection of AMD from color fundus images. Med. Bio. Eng. Comput. 60(5), 1431–1448 (2022)

    Article  Google Scholar 

  12. Chaturvedi, S.S., Gupta, K., Ninawe, V., Prasad, P.S.: Automated diabetic retinopathy grading using deep convolutional neural network. arXiv preprint arXiv:2004.06334 (2020)

  13. Chazal, F., Michel, B.: An introduction to topological data analysis: fundamental and practical aspects for data scientists. Front. Artif. Intell. 4, 108 (2021)

    Article  Google Scholar 

  14. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  15. Crawford, L., et al.: Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. J. Am. Stat. Assoc. 115(531), 1139–1150 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dey, T.K., Wang, Y.: Computational Topology for Data Analysis. Cambridge University Press, Cambridge (2022)

    Book  MATH  Google Scholar 

  17. Elangovan, P., Nath, M.K.: Glaucoma assessment from color fundus images using convolutional neural network. Int. J. Imaging Syst. Technol. 31(2), 955–971 (2021)

    Article  Google Scholar 

  18. Fang, H., et al.: ADAM challenge: detecting age-related macular degeneration from fundus images. IEEE Trans. Med. Imaging 41, 2828–2847 (2022)

    Article  Google Scholar 

  19. Fawcett, T.: An introduction to ROC analysis. Pattern Rec. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  20. Feng, Z., Xu, C., Tao, D.: Self-supervised representation learning by rotation feature decoupling. In: CVPR, pp. 10364–10374 (2019)

    Google Scholar 

  21. Fernández, A., et al.: SMOTE for learning from imbalanced data. J. Artif. Intell. Res. 61, 863–905 (2018)

    Article  MATH  Google Scholar 

  22. Fu, H., et al.: ADAM: automatic detection challenge on AMD (2020). https://doi.org/10.21227/dt4f-rt59

  23. Giansiracusa, N., Giansiracusa, R., Moon, C.: Persistent homology machine learning for fingerprint classification. In: ICMLA, pp. 1219–1226. IEEE (2019)

    Google Scholar 

  24. Gibbons, J.D., Chakraborti, S.: Nonparametric Statistical Inference. CRC Press, Boca Raton (2014)

    MATH  Google Scholar 

  25. Giunti, B.: TDA applications library (2022). https://www.zotero.org/groups/2425412/tda-applications/library

  26. Goutam, B., Hashmi, M.F., Geem, Z.W., Bokde, N.D.: A comprehensive review of deep learning strategies in retinal disease diagnosis using fundus images. IEEE Access 10, 57796–57823 (2022)

    Article  Google Scholar 

  27. Greenspan, H., Van Ginneken, B., Summers, R.M.: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5), 1153–1159 (2016)

    Article  Google Scholar 

  28. GUDHI: The GUDHI project (2020). https://gudhi.inria.fr/doc/3.3.0/

  29. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  30. Islam, M.R., et al.: Applying supervised contrastive learning for the detection of DR and its severity levels from fundus images. Comput. Biol. Med. 146, 105602 (2022)

    Article  Google Scholar 

  31. Joblove, G.H., Greenberg, D.: Color spaces for computer graphics. In: Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques, pp. 20–25 (1978)

    Google Scholar 

  32. Kanari, L., et al.: A topological representation of branching neuronal morphologies. Neuroinformatics 16(1), 3–13 (2018)

    Article  Google Scholar 

  33. Kumar, G., Chatterjee, S., Chattopadhyay, C.: DRISTI: a hybrid deep neural network for diabetic retinopathy diagnosis. Signal Image Video Process. 15(8), 1679–1686 (2021)

    Article  Google Scholar 

  34. Latif, J., Tu, S., Xiao, C., Ur Rehman, S., Imran, A., Latif, Y.: ODGNet: a deep learning model for automated optic disc localization and glaucoma classification using fundus images. SN Appl. Sci. 4(4), 1–11 (2022)

    Article  Google Scholar 

  35. Li, T., et al.: Applications of deep learning in fundus images: a review. Med. Image Anal. 69, 101971 (2021)

    Article  Google Scholar 

  36. Li, X., et al.: Rotation-oriented collaborative self-supervised learning for retinal disease diagnosis. IEEE Trans. Med. Imaging 40(9), 2284–2294 (2021)

    Article  Google Scholar 

  37. Liao, W., et al.: Clinical interpretable deep learning model for glaucoma diagnosis. IEEE J. Biomed. Health Inform. 24(5), 1405–1412 (2019)

    Article  Google Scholar 

  38. Macsik, P., Pavlovicova, J., Goga, J., Kajan, S.: Local binary CNN for diabetic retinopathy classification on fundus images. Acta Polytech. Hung. 19(7), 27–45 (2022)

    Article  Google Scholar 

  39. Milosavljević, N., Morozov, D., Skraba, P.: Zigzag persistent homology in matrix multiplication time. In: SoCG, pp. 216–225 (2011)

    Google Scholar 

  40. Orlando, J.I., et al.: An ensemble deep learning based approach for red lesion detection in fundus images. Comput. Methods Programs Biomed. 153, 115–127 (2018)

    Article  Google Scholar 

  41. Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap for the computation of persistent homology. EPJ Data Sci. 6, 1–38 (2017)

    Article  Google Scholar 

  42. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P., Zheng, Y.: Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 90, 200–205 (2016)

    Article  Google Scholar 

  44. Rieck, B., et al.: Uncovering the topology of time-varying fmri data using cubical persistence. In: NeurIPS, vol. 33, pp. 6900–6912 (2020)

    Google Scholar 

  45. Sarhan, M.H., et al.: Machine learning techniques for ophthalmic data processing: a review. IEEE J. Biomed. Health Inform. 24(12), 3338–3350 (2020)

    Article  Google Scholar 

  46. Skaf, Y., Laubenbacher, R.: Topological data analysis in biomedicine: a review. J. Biomed. Inform. 104082 (2022)

    Google Scholar 

  47. Skraba, P., Ovsjanikov, M., Chazal, F., Guibas, L.: Persistence-based segmentation of deformable shapes. In: CVPR-Workshops, pp. 45–52. IEEE (2010)

    Google Scholar 

  48. Srivastava, O., et al.: Artificial intelligence and machine learning in ophthalmology: a review. Indian J. Ophthalmol. 71(1), 11–17 (2023)

    Article  Google Scholar 

  49. Stolz, B.J., et al.: Topological data analysis of task-based fMRI data from experiments on schizophrenia. J. Phys.: Complexity 2(3), 035006 (2021)

    Google Scholar 

  50. Taj, I.A., et al.: An ensemble framework based on deep CNNs for glaucoma classification. Math. Biosci. Eng. 18(5), 5321–5347 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  51. Tauzin, G., et al.: giotto-TDA: a TDA toolkit for machine learning and data exploration (2020)

    Google Scholar 

  52. Ting, D.S.W., et al.: Artificial intelligence and deep learning in ophthalmology (2019)

    Google Scholar 

  53. Ting, D.S., et al.: Deep learning in ophthalmology: the technical and clinical considerations. Prog. Retin. Eye Res. 72, 100759 (2019)

    Article  Google Scholar 

  54. Wasserman, L.: Topological data analysis. Annu. Rev. Stat. Appl. 5, 501–532 (2018)

    Article  MathSciNet  Google Scholar 

  55. World Health Organization, W.: World vision report (2019). https://www.who.int/publications/i/item/9789241516570

  56. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR, pp. 3733–3742 (2018)

    Google Scholar 

  57. Ye, M., Zhang, X., Yuen, P.C., Chang, S.F.: Unsupervised embedding learning via invariant and spreading instance feature. In: CVPR, pp. 6210–6219 (2019)

    Google Scholar 

  58. Zhang, Z., et al.: ORIGA-light: an online retinal fundus image database for glaucoma analysis and research. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 3065–3068. IEEE (2010)

    Google Scholar 

  59. Zhang, Z., Ji, Z., Chen, Q., Yuan, S., Fan, W.: Joint optimization of CycleGAN and CNN classifier for detection and localization of retinal pathologies on color fundus photographs. IEEE J. Biomed. Health Inform. 26(1), 115–126 (2021)

    Article  Google Scholar 

  60. Zhao, X., et al.: Glaucoma screening pipeline based on clinical measurements and hidden features. IET Image Process. 13(12), 2213–2223 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Science Foundation (Grant # DMS-2202584) and by Simons Foundation (Grant # 579977).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baris Coskunuzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, F., Coskunuzer, B. (2024). ToFi-ML: Retinal Image Screening with Topological Machine Learning. In: Waiter, G., Lambrou, T., Leontidis, G., Oren, N., Morris, T., Gordon, S. (eds) Medical Image Understanding and Analysis. MIUA 2023. Lecture Notes in Computer Science, vol 14122. Springer, Cham. https://doi.org/10.1007/978-3-031-48593-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48593-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48592-3

  • Online ISBN: 978-3-031-48593-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics