Skip to main content

Influence of Movement Speed and Interaction Instructions on Subjective Assessments, Performance and Psychophysiological Reactions During Human-Robot Interaction

  • Conference paper
  • First Online:
HCI International 2023 – Late Breaking Papers (HCII 2023)

Abstract

Information technology is advancing rapidly, and with it, robots. Nowadays, the interaction between robots and humans changes e.g., from the execution of simple movements towards a new level where they can perform different work-related aspects almost completely independently. Therefore, especially in production, the prevention of negative emotions is important. Consequently, attention should not only be focused on the physical safety of workers but also on their acceptance, fears and biases. An experimental study focuses on the impact of two different interaction instruction variants, with and without direct human-robot interaction, on acceptance, trust, performance and participants’ psychophysiological (ECG and EDA) reactions during human-robot interaction with an industrial robot (Horst600, fruitcore robotics GmbH). Furthermore, the movement speed of the robot was variated (five levels) within a simple handover task. Overall, 14 men and 5 women participated in the study. They were randomly assigned to the two different instruction variants. On the one hand, the results indicate significant differences regarding the movement speed levels and interestingly, on the other hand, the results did not show significant effects regarding the investigated instructions. To sum it up, the results of the study should help to understand how people perceive a physical interaction with an industrial robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Soori, M., Arezoo, B., Dastres, R.: Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cogn. Robot. 3, 54–70 (2023). https://doi.org/10.1016/j.cogr.2023.04.001

    Article  Google Scholar 

  2. Ajoudani, A., Zanchettin, A.M., Ivaldi, S., Albu-Schäffer, A., Kosuge, K., Khatib, O.: Progress and prospects of the human–robot collaboration. Auton. Robot. 42, 957–975 (2018)

    Article  Google Scholar 

  3. Statista. Volume of robotics market worldwide from 2016 to 2027, by region (in thousands) [Graph]. In: Statista. https://www.statista.com/forecasts/1388113/global-robotics-volume-by-region (2022)

  4. Lai, R., Lin, W., Wu, Y.: Review of research on the key technologies, application fields and development trends of intelligent robots. In: Chen, Z., Mendes, A., Yan, Y., Chen, S. (eds.) ICIRA 2018. LNCS (LNAI), vol. 10985, pp. 449–458. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97589-4_38

    Chapter  Google Scholar 

  5. Pott, A., Dietz, T.: Industrielle Robotersysteme [Industrial robot systems]. Springer, Wiesbaden (2019). https://doi.org/10.1007/978-3-658-25345-5

    Book  Google Scholar 

  6. Gasteiger, N., Hellou, M., Ahn, H.S.: Factors for personalization and localization to optimize human-robot interaction: a literature review. Int. J. Soc. Robot. 15, 689–701 (2023). https://doi.org/10.1007/s12369-021-00811-8

    Article  Google Scholar 

  7. Chandra, M., Kumar, K., Thakur, P., Chattopadhyaya, S.: Digital technologies, healthcare and Covid 19: insights from developing and emerging nations. Heal. Technol. 12, 547–568 (2022). https://doi.org/10.1007/s12553-022-00650-1

    Article  Google Scholar 

  8. Sheridan, T.B.: Human-robot interaction: status and challenges. Hum. Factors 58(4), 525–532 (2016)

    Article  Google Scholar 

  9. Heyer, C.: Human-robot interaction and future industrial robotics applications. In: IEEE Xplore: The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4749–4754 (2010)

    Google Scholar 

  10. Weber, M.A., Schüth, N.J., Stowasser, S: Qualifizierungsbedarfe für die mensch-roboter-kollaboration [Qualification Needs for Human-Robot Collaboration.]. Zeitschrift Für Wirtschaftlichen Fabrikbetrieb [Journal For Economical Factory Operation] 113(10), 619–622 (2018)

    Google Scholar 

  11. Hancock, P.A., Billings, D.R., Schaefer, K.E., Chen, J.Y.C., de Visser, E.J., Parasuraman, R.: A meta-analysis of factors affecting trust in human-robot interaction. Hum. Factors 53, 517–527 (2011)

    Article  Google Scholar 

  12. Arbeitsschutzgesetz – ArbSchG. Gesetz über die Durchführung von Maßnahmen des Arbeitsschutzes zur Verbesserung der Sicherheit und des Gesundheitsschutzes der Beschäftigten bei der Arbeit. Bundesministerium der Justiz, Deutschland [Occupational Safety Act - ArbSchG. Law on the implementation of occupational health and safety measures to improve the safety and health of employees at work. Federal Ministry of Justice, Germany] (2023)

    Google Scholar 

  13. Konradt, U., Vibrans, O., König, C.-D., Hertel, G.: Wirksamkeit und Akzeptanz eines Videos zur Erstunterweisung in Arbeitssicherheit [Effectiveness and acceptability of an initial occupational safety instruction video]. A&O 46(2), 78–83 (2002)

    Google Scholar 

  14. Chien, S.-E., Yu, C.-J., Lai, Y.-Y., Liu, J.-C., Fu, L.-C., Yeh, S.-L.: Can older adults’ acceptance toward robots be enhanced by observational learning? In: Rau, P.-L. (ed.) HCII 2020. LNCS, vol. 12192, pp. 564–576. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49788-0_43

    Chapter  Google Scholar 

  15. Eigenstetter, M., Sen, S., Kremer, L.: Kurzfristige Beanspruchungen, Akzeptanz und Sicherheit im Umgang mit einem kollaborierenden Roboter: die Rolle der Vorhersehbarkeit [Short-term stresses, acceptance, and safety when using a collaborative robot: the role of predictability]. In: GfA, Dortmund (Hrsg.): Frühjahrskongress 2020, pp. 1–7, GfA, Berlin (2020)

    Google Scholar 

  16. Thiemermann, S.: Direkte Mensch-Roboter-Kooperation in der Kleinteilemontage mit einem SCARA-Roboter [Direct human-robot cooperation in small parts assembly with a SCARA robot], Germany, Stuttgart (2005)

    Google Scholar 

  17. Arai, T., Kato, R., Fujita, M.: Assessment of operator stress induced by robot collaboration in assembly. CIRP Ann. 59, 5–8 (2010)

    Article  Google Scholar 

  18. Or, C.K.L., Duffy, V.G., Cheung, C.C.: Perception of safe robot idle time in virtual reality and real industrial environments. Ergonomics 39(5), 807–812 (2009)

    Google Scholar 

  19. Boucsein, W., Backs, R.W.: Engineering psychophysiology as a discipline: historical and theoretical aspects. In: Backs, R.W., Boucsein, W. (eds.) Engineering Psychophysiology: Issues and Applications, pp. 3–30. CRC Press, Boca Raton (2000)

    Chapter  Google Scholar 

  20. Dawson, M.E., Schell, A.M., Filion, D.L.: The electrodermal system. In: Cacioppo, J.T., Tassinary, L.G., Berntson, G.G., (eds.), Handbook of Psychophysiology (Fourth Edition), pp. 217–243. Cambridge University Press (2017)

    Google Scholar 

  21. Birkle, J., Vogel, A., Wagner-Hartl, V.: Impact of distance and movement speed on the acceptance of human-robot interaction – method and first evaluation. In: Stephanidis, C., et al. (Eds.): HCII 2022, CCIS 1655, pp. 483–490, Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19682-9_61

  22. Bethel, C.L., Salomon, K., Murphy, R.R., Burke, J.L.: Survey of psychophysiology measurements applied to human-robot interaction. In: 16th IEEE International Conference on Robot & Human Interactive Communication, Korea, Jeju (2007)

    Google Scholar 

  23. Boucsein, W.: Psychophysiologische Methoden in der Ingenieurspsychologie [Psychophysiological methods in Engineering Psychology]. In: Zimolong, B., Konradt, U., (eds.), Sonderdruck aus Enzyklopädie der Psychologie: Themenbereich D Praxisgebiete: Serie III Wirtschafts-, Organisations- und Arbeitspsychologie. Band 2: Ingenieurspsychologie [Offprint from Encyclopedia of Psychology: Subject Area D Practice Areas: Series III Business, organizational, and industrial psychology. Volume 2: Engineering Psychology], pp. 317–358. Göttingen: Hogrefe (2006)

    Google Scholar 

  24. Boucsein, W., Backs, R.W.: The psychophysiology of emotion, arousal, and personality: methods and models. In: Duffy, V.G. (ed.), Handbook of Digital Human Modeling. Research for Applied Ergonomics and Human Factors Engineering, pp. 35-1–35-18. CRC Press, Boca Raton (2009)

    Google Scholar 

  25. Fahr, A., Hofer, M.: Psychophysiologische Messmethoden [Psychophysiological measurement methods]. In: Möhring, W., Schlütz, D. (eds.) Handbuch standardisierte Erhebungs-verfahren in der Kommunikationswissenschaft [Handbook of standardized survey procedures in communication science], pp. 347–365. Springer, Wiesbaden (2013)

    Google Scholar 

  26. Gramann, K., Schandry, R.: Psychophysiologie: körperliche indikatoren psychischen geschehens [Psychophysiology: Physical indicators of mental events]. Beltz (2009)

    Google Scholar 

  27. Karrer, K., Glaser, C., Clemens, C., Bruder, C.: Technikaffinität erfassen – der Fragebogen TA-EG [Measuring affinity for technology - the TA-EG questionnaire]. In: Lichtenstein, A., Stößel, C., Clemens, C., (eds.), Der Mensch im Mittelpunkt technischer Systeme. 8. Berliner Werkstatt Mensch-Maschine-Systeme [Humans at the center of technical systems. 8th Berlin Human-Machine Systems Workshop], pp. 196–201. VDI Verlag. (2009)

    Google Scholar 

  28. Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25(1), 49–59 (1994)

    Article  Google Scholar 

  29. Gleichauf, K., Schmid, R.: Akzeptanz und Vertrauen in die MenschRoboter-Interaktion anhand unterschiedlicher Szenarien [Acceptance and trust in human-robot interaction based on different scenarios] (unpublished project work, supervised by Wagner-Hartl, V.). Furtwangen University (2022)

    Google Scholar 

  30. Wagner-Hartl, V., Schmid, R., Gleichauf, K.: The influence of task complexity on acceptance and trust in human-robot interaction - gender and age differences. In: Paletta, L., Ayaz, H., (eds.), Cognitive computing and internet of things 43, pp. 118–126. AHFE International (2022)

    Google Scholar 

  31. Van Der Laan, J.D., Heino, A., De Waard, D.: A simple procedure for the assessment of acceptance of advanced transport telematics. Transp. Res. Part C: Emerg. Technol. 5(1), 1–10 (1997)

    Article  Google Scholar 

  32. movisens GmbH. EcgMove 4 | movisens Docs (2022)

    Google Scholar 

  33. movisens GmbH. EdaMove 4 | movisens Docs (2022)

    Google Scholar 

  34. movisens GmbH: DataAnalyzer (2022)

    Google Scholar 

  35. fruitcore robotics GmbH: The industrial robot HORST600. https://fruitcore-robotics.com/horst600/ (2022)

  36. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979)

    MathSciNet  MATH  Google Scholar 

Download references

Author’s Statement

The authors state no conflict of interest. Informed consent has been obtained from all individuals included in this study. The research has been approved by the ethics’ committee of Furtwangen University. The authors would like to thank all participants that participated in the study as well as Peter Anders and Katharina Gleichauf for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Wagner-Hartl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wagner-Hartl, V., Nakladal, S., Koch, T., Babajic, D., Mazur, S., Birkle, J. (2023). Influence of Movement Speed and Interaction Instructions on Subjective Assessments, Performance and Psychophysiological Reactions During Human-Robot Interaction. In: Kurosu, M., et al. HCI International 2023 – Late Breaking Papers. HCII 2023. Lecture Notes in Computer Science, vol 14054. Springer, Cham. https://doi.org/10.1007/978-3-031-48038-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48038-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48037-9

  • Online ISBN: 978-3-031-48038-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics